-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencoderdecoder.py
244 lines (191 loc) · 7.63 KB
/
encoderdecoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
"""
Thank you to the following notebooks:
https://www.kaggle.com/lucabergamini/lyft-baseline-09-02/
https://www.kaggle.com/kramadhari/lstm-based-encoder-decoder-seq2seq-for-mp
https://www.kaggle.com/corochann/lyft-training-with-multi-mode-confidence
"""
# ensure version of L5Kit
import l5kit
assert l5kit.__version__ == "1.1.0"
import numpy as np
import pandas as pd
import os
import torch
import time
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision.models.resnet import resnet50
from tqdm.notebook import tqdm
from typing import Dict
from l5kit.data import LocalDataManager, ChunkedDataset
from l5kit.geometry import transform_points
from l5kit.dataset import AgentDataset
from l5kit.evaluation import write_pred_csv
from l5kit.rasterization import build_rasterizer
os.environ["L5KIT_DATA_FOLDER"] = "/data/"
dm = LocalDataManager(None)
cfg = {
'format_version': 4,
'model_params': {
'history_num_frames': 10,
'history_step_size': 1,
'history_delta_time': 0.1,
'future_num_frames': 50,
'future_step_size': 1,
'future_delta_time': 0.1,
'lr': 1e-3,
'fname': "lstm_model/lstm_best.pth"
},
'raster_params': {
'raster_size': [224, 224],
'pixel_size': [0.5, 0.5],
'ego_center': [0.25, 0.5],
'map_type': 'py_semantic',
'semantic_map_key': 'semantic_map/semantic_map.pb',
'dataset_meta_key': 'meta.json',
'filter_agents_threshold': 0.5
},
'train_data_loader': {
'key': 'scenes/train.zarr',
'batch_size': 32,
'shuffle': True,
'num_workers': 4
},
'val_data_loader': {
'key': 'scenes/validate.zarr',
'batch_size': 32,
'shuffle': True,
'num_workers': 4
},
'test_data_loader': {
'key': 'scenes/test.zarr',
'batch_size': 16,
'shuffle': False,
'num_workers': 4
},
'train_params': {
'max_num_steps': 10000,
'checkpoint_every_n_steps': 2000,
}
}
train_cfg = cfg["train_data_loader"]
train_zarr = ChunkedDataset(dm.require(train_cfg["key"])).open()
rasterizer = build_rasterizer(cfg, dm)
train_dataset = AgentDataset(cfg, train_zarr, rasterizer)
train_dataloader = DataLoader(train_dataset,
shuffle=train_cfg["shuffle"],
batch_size=train_cfg["batch_size"],
num_workers=train_cfg["num_workers"]
)
print(train_dataset)
val_cfg = cfg["val_data_loader"]
val_zarr = ChunkedDataset(dm.require(val_cfg["key"])).open()
rasterizer = build_rasterizer(cfg, dm)
val_dataset = AgentDataset(cfg, val_zarr, rasterizer)
val_dataloader = DataLoader(val_dataset,
shuffle=val_cfg["shuffle"],
batch_size=val_cfg["batch_size"],
num_workers=val_cfg["num_workers"]
)
print(val_dataset)
class EncoderLSTM_LyftModel(nn.Module):
def __init__(self, cfg):
super(EncoderLSTM_LyftModel, self).__init__()
self.input_sz = 2
self.hidden_sz = 128
self.num_layer = 1
self.sequence_length = 11
self.Encoder_lstm = nn.LSTM(self.input_sz,self.hidden_sz,self.num_layer,batch_first=True)
def forward(self,inputs):
output,hidden_state = self.Encoder_lstm(inputs)
return output,hidden_state
class DecoderLSTM_LyftModel(nn.Module):
def __init__(self, cfg):
super(DecoderLSTM_LyftModel, self).__init__()
self.input_sz = 128 #(2000 from fcn_en_output reshape to 50*40)
self.hidden_sz = 128
self.hidden_sz_en = 128
self.num_layer = 1
self.sequence_len_de = 1
self.interlayer = 256
num_targets = 2 * cfg["model_params"]["future_num_frames"]
self.encoderLSTM = EncoderLSTM_LyftModel (cfg)
self.Decoder_lstm = nn.LSTM( self.input_sz,self.hidden_sz,self.num_layer,batch_first=True)
self.fcn_en_state_dec_state= nn.Sequential(nn.Linear(in_features=self.hidden_sz_en, out_features=self.interlayer),
nn.ReLU(inplace=True),
nn.Linear(in_features=self.interlayer, out_features=num_targets))
def forward(self,inputs):
_,hidden_state = self.encoderLSTM(inputs)
inout_to_dec = torch.ones(inputs.shape[0],self.sequence_len_de,self.input_sz).to(device)
#for i in range(cfg["model_params"]["future_num_frames"]+1): # this can be used to feed output from previous LSTM to anther one which is stacked.
inout_to_dec,hidden_state = self.Decoder_lstm(inout_to_dec,(hidden_state[0],hidden_state[1]) )
fc_out = self.fcn_en_state_dec_state (inout_to_dec.squeeze(dim=0))
return fc_out.reshape(inputs.shape[0],cfg["model_params"]["future_num_frames"],-1)
def forward(data, model, device, criterion = nn.MSELoss(reduction="none")):
history_positions = data['history_positions'].to(device)
history_availabilities = data['history_availabilities'].to(device)
target_availabilities = data["target_availabilities"].unsqueeze(-1).to(device)
targets_position = data["target_positions"].to(device)
outputs = model(history_positions)
loss = (criterion(outputs, targets_position) * target_availabilities).mean()
return outputs, loss
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = DecoderLSTM_LyftModel(cfg).to(device)
if os.path.exists(cfg["model_params"]["fname"]):
model.load_state_dict(torch.load(cfg["model_params"]["fname"], map_location=device))
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=0.0005)
print(f'device {device}')
tr_it = iter(train_dataloader)
vl_it = iter(val_dataloader)
progress_bar = tqdm(range(cfg["train_params"]["max_num_steps"]))
losses_train = []
losses_val = []
iterations = []
metrics = []
times = []
start = time.time()
for i in progress_bar:
try:
data = next(tr_it)
except StopIteration:
tr_it = iter(train_dataloader)
data = next(tr_it)
model.train()
torch.set_grad_enabled(True)
# Forward pass
_, loss = forward(data, model, device)
losses_train.append(loss.item())
# Get validation loss before backward pass
with torch.no_grad():
try:
val_data = next(vl_it)
except StopIteration:
vl_it = iter(val_dataloader)
val_data = next(vl_it)
model.eval()
outputs_val, loss_val = forward(val_data, model, device)
losses_val.append(loss_val.item())
if loss_val == min(losses_val):
torch.save(model.state_dict(), f'{cfg["model_params"]["fname"]}')
desc = f" TrainLoss: {round(loss.item(), 4)} ValLoss: {round(loss_val.item(), 4)} TrainMeanLoss: {round(np.mean(losses_train),4)} ValMeanLoss: {round(np.mean(losses_val),4)}"
print(desc)
# progress_bar.set_description(desc)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Total training time is {(time.time()-start)/60} mins")
vl_it = iter(val_dataloader)
progress_bar = tqdm(val_dataloader)
losses_val = []
with torch.no_grad():
for i in progress_bar:
try:
val_data = next(vl_it)
except StopIteration:
vl_it = iter(val_dataloader)
val_data = next(vl_it)
model.eval()
outputs_val, loss_val = forward(val_data, model, device)
losses_val.append(loss_val.item())
print("Validation loss: {}".format(np.mean(losses_val),4))