forked from frnsys/retrosynthesis_planner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicies.py
359 lines (300 loc) · 12.5 KB
/
policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os
import random
import numpy as np
import tensorflow as tf
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem
from tqdm import tqdm, trange
from collections import defaultdict
def fps_to_arr(fps):
"""Faster conversion to ndarray"""
arrs = []
for fp in fps:
onbits = list(fp.GetOnBits())
arr = np.zeros(fp.GetNumBits())
arr[onbits] = 1
arrs.append(arr)
arrs = np.array(arrs)
return arrs
def highway_layer(x, activation, carry_bias=-1.0):
size = x.shape[-1].value
W_T = tf.Variable(tf.truncated_normal((size, size), stddev=0.1), name='weight_transform')
b_T = tf.Variable(tf.constant(carry_bias, shape=(size,)), name='bias_transform')
W = tf.Variable(tf.truncated_normal((size, size), stddev=0.1), name='weight')
b = tf.Variable(tf.constant(0.1, shape=(size,)), name='bias')
T = tf.sigmoid(tf.matmul(x, W_T) + b_T, name='transform_gate')
H = activation(tf.matmul(x, W) + b, name='activation')
C = tf.subtract(1.0, T, name='carry_gate')
return tf.add(tf.multiply(H, T), tf.multiply(x, C))
def fingerprint_mols(mols, fp_dim):
fps = []
for mol in mols:
mol = Chem.MolFromSmiles(mol)
# Necessary for fingerprinting
# Chem.GetSymmSSSR(mol)
# "When comparing the ECFP/FCFP fingerprints and
# the Morgan fingerprints generated by the RDKit,
# remember that the 4 in ECFP4 corresponds to the
# diameter of the atom environments considered,
# while the Morgan fingerprints take a radius parameter.
# So the examples above, with radius=2, are roughly
# equivalent to ECFP4 and FCFP4."
# <http://www.rdkit.org/docs/GettingStartedInPython.html>
fp = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=int(fp_dim))
# fold_factor = fp.GetNumBits()//fp_dim
# fp = DataStructs.FoldFingerprint(fp, fold_factor)
fps.append(fp)
return fps
def fingerprint_reactions(reactions, fp_dim):
fps = []
for r in reactions:
rxn = AllChem.ReactionFromSmarts(r)
# fp = AllChem.CreateDifferenceFingerprintForReaction(rxn)
fp = AllChem.CreateStructuralFingerprintForReaction(rxn)
fold_factor = fp.GetNumBits()//fp_dim
fp = DataStructs.FoldFingerprint(fp, fold_factor)
fps.append(fp)
return fps
def train(sess, net, X, y, batch_size=16, epochs=10):
losses = []
accuracy = []
it = trange(epochs)
n_steps = int(np.ceil(len(X)/batch_size))
for e in it:
# Shuffle
# p = np.random.permutation(len(X))
# X, y = X[p], y[p]
xy = list(zip(X, y))
random.shuffle(xy)
X, y = zip(*xy)
# Iterate batches
for i in tqdm(range(n_steps)):
l = i*batch_size
u = l + batch_size
X_batch, y_batch = X[l:u], y[l:u]
X_batch = net.preprocess(X_batch)
_, err, acc = sess.run(
[net.train_op, net.loss_op, net.acc_op],
feed_dict={
net.keep_prob: 0.4,
net.X: X_batch,
net.y: y_batch
}
)
losses.append(err)
accuracy.append(acc)
it.set_postfix(
loss=np.mean(losses[-10:]) if losses else None,
acc=np.mean(accuracy[-10:]) if accuracy else None)
return losses
class RolloutPolicyNet:
def __init__(self, n_rules, fp_dim=8912, k=10):
self.fp_dim = fp_dim
self.n_rules = n_rules
self.X = tf.placeholder(tf.float32, shape=(None, fp_dim))
self.y = tf.placeholder(tf.int64, shape=(None,))
self.keep_prob = tf.placeholder(tf.float32, shape=())
inp = tf.math.log(self.X+1)
net = tf.layers.dense(inp, 512, activation=tf.nn.elu)
net = tf.nn.dropout(net, keep_prob=self.keep_prob)
net = tf.layers.dense(net, n_rules, activation=None)
self.pred_op = tf.nn.softmax(net)
# self.pred = tf.nn.top_k(pred, k=k)
self.loss_op = tf.losses.sparse_softmax_cross_entropy(self.y, net)
self.train_op = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(self.loss_op)
correct_pred = tf.equal(tf.argmax(self.pred_op, 1), self.y)
self.acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
def preprocess(self, X):
# Compute fingerprints
return fps_to_arr(fingerprint_mols(X, self.fp_dim))
class ExpansionPolicyNet:
def __init__(self, idx, n_rules, fp_dim=1e6):
self.idx = idx
self.fp_dim = fp_dim
self.n_rules = n_rules
# self.X = tf.placeholder(tf.float32, shape=(None, self.idx.shape[-1]))
self.X = tf.placeholder(tf.float32, shape=(None, fp_dim))
self.y = tf.placeholder(tf.int64, shape=(None,))
self.keep_prob = tf.placeholder(tf.float32, shape=())
# inp = self.X
inp = tf.math.log(self.X+1)
net = tf.layers.dense(inp, 512, activation=tf.nn.elu)
net = tf.nn.dropout(net, keep_prob=self.keep_prob)
for _ in range(5):
net = highway_layer(net, activation=tf.nn.elu)
net = tf.nn.dropout(net, keep_prob=self.keep_prob)
net = tf.layers.dense(net, n_rules, activation=None)
self.pred_op = tf.nn.softmax(net)
self.loss_op = tf.losses.sparse_softmax_cross_entropy(self.y, net)
self.train_op = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(self.loss_op)
correct_pred = tf.equal(tf.argmax(self.pred_op, 1), self.y)
self.acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
def preprocess(self, X):
# Compute fingerprints
X = fingerprint_mols(X, self.fp_dim)
X = fps_to_arr(X)
# Apply variance threshold
# return np.log(X[:,self.idx] + 1)
return X
class InScopeFilterNet:
def __init__(self, product_fp_dim=16384, reaction_fp_dim=2048):
self.prod_fp_dim = product_fp_dim
self.react_fp_dim = reaction_fp_dim
self.X = tf.placeholder(tf.float32, shape=(None, product_fp_dim+reaction_fp_dim))
self.X_prod = self.X[:,:product_fp_dim]
self.X_react = self.X[:,product_fp_dim:]
self.y = tf.placeholder(tf.int32, shape=(None,))
self.keep_prob = tf.placeholder(tf.float32, shape=())
# Product branch
prod_inp = tf.math.log(self.X_prod+1)
prod_net = tf.layers.dense(prod_inp, 1024, activation=tf.nn.elu)
prod_net = tf.nn.dropout(prod_net, keep_prob=self.keep_prob)
for _ in range(5):
prod_net = highway_layer(prod_net, activation=tf.nn.elu)
# Reaction branch
react_net = tf.layers.dense(self.X_react, 1024, activation=tf.nn.elu)
# Cosine similarity
prod_norm = tf.nn.l2_normalize(prod_net, axis=-1)
react_norm = tf.nn.l2_normalize(react_net, axis=-1)
cosine_sim = tf.reduce_sum(tf.multiply(prod_norm, react_norm), axis=-1)
# Paper's architecture passes the similarity through a sigmoid function
# but that seems redundant?
self.pred = tf.nn.sigmoid(cosine_sim)
self.loss_op = tf.losses.log_loss(self.y, self.pred)
self.train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(self.loss_op)
correct_pred = tf.equal(self.y, tf.cast(tf.round(self.pred), tf.int32))
self.acc_op = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
def preprocess(self, X):
# Compute fingerprints
prod_mols, react_mols = zip(*X)
prod_fps = fingerprint_mols(prod_mols, self.prod_fp_dim)
react_fps = fingerprint_reactions(react_mols, self.react_fp_dim)
return np.hstack([prod_fps, react_fps])
if __name__ == '__main__':
print('Loading data...')
prod_to_rules = defaultdict(set)
with open('data/templates.dat', 'r') as f:
for l in tqdm(f, desc='products'):
rule, prod = l.strip().split('\t')
prod_to_rules[prod].add(rule)
rollout_rules = {}
with open('data/rollout.dat', 'r') as f:
for i, l in tqdm(enumerate(f), desc='rollout'):
rule = l.strip()
rollout_rules[rule] = i
expansion_rules = {}
with open('data/expansion.dat', 'r') as f:
for i, l in tqdm(enumerate(f), desc='expansion'):
rule = l.strip()
expansion_rules[rule] = i
prods = list(prod_to_rules.keys())
exp_fp_dim = 1e4
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
def reducefn(a, b):
n_a, mean_a, var_a = a
n_b, mean_b, var_b = b
n_ab = n_a + n_b
mean_ab = ((mean_a * n_a) + (mean_b * n_b)) / n_ab
var_ab = (((n_a * var_a) + (n_b * var_b)) / n_ab) + ((n_a * n_b) * ((mean_b - mean_a) / n_ab)**2)
return n_ab, mean_ab, var_ab
def mapfn(chunk):
chunk = fingerprint_mols(chunk, exp_fp_dim)
arrs = np.log(fps_to_arr(chunk) + 1)
return len(arrs), np.mean(arrs, axis=0), np.var(arrs, axis=0)
save_path = 'model'
ckpt_path = os.path.join(save_path, 'model.ckpt')
if not os.path.exists(save_path):
os.makedirs(save_path)
# Variance threshold
# No specific threshold is mentioned in the paper,
# just that it's used to "remove rare features"
# idx = np.load(os.path.join(save_path, 'expansion.idx.npy'))
from multiprocessing import Pool
from functools import reduce
chunk_size = 100
prods = []
for prod, rules in prod_to_rules.items():
if any(r in expansion_rules for r in rules):
prods.append(prod)
# prods = random.sample(prods, 200000)
with Pool() as p:
_, _, var = reduce(reducefn, tqdm(p.imap(mapfn, chunker(prods, chunk_size)), total=len(prods)//chunk_size))
idx = np.where(var > 0)[0]
# np.save(os.path.join(save_path, 'expansion.idx'), idx, allow_pickle=False)
rollout = RolloutPolicyNet(n_rules=len(rollout_rules))
expansion = ExpansionPolicyNet(idx, n_rules=len(expansion_rules), fp_dim=exp_fp_dim)
filter = InScopeFilterNet()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
saver = tf.train.Saver()
# saver.restore(sess, ckpt_path)
# Rollout training
# print('Rollout training...')
# X, y = [], []
# for prod, rules in tqdm(prod_to_rules.items(), desc='data prep'):
# rules = [r for r in rules if r in rollout_rules]
# if not rules: continue
# # Ideally trained as multilabel,
# # but multiclass, single label is easier atm
# for r in rules:
# id = rollout_rules[r]
# y.append(id)
# X.append(prod)
# print('Training size:', len(X))
# train(sess, rollout, X, y, batch_size=256, epochs=100)
# saver.save(sess, ckpt_path)
# Check
# X = rollout.preprocess(X[20:30])
# y_pred = sess.run(rollout.pred_op, feed_dict={
# rollout.keep_prob: 1.,
# rollout.X: X
# })
# print(list(np.argmax(y_pred, 1)))
# print(y[20:30])
print('Expansion training...')
X, y = [], []
for prod, rules in tqdm(prod_to_rules.items(), desc='data prep'):
rules = [r for r in rules if r in expansion_rules]
if not rules: continue
# Ideally trained as multilabel,
# but multiclass, single label is easier atm
for r in rules:
id = expansion_rules[r]
y.append(id)
X.append(prod)
print('Training size:', len(X))
train(sess, expansion, X, y, batch_size=1024, epochs=2000)
saver.save(sess, ckpt_path)
# print('In-Scope Filter training...')
# X, y = [], []
# exists = set()
# for prod, rules in tqdm(prod_to_rules.items(), desc='data prep'):
# rules = [r for r in rules if r in expansion_rules]
# if not rules: continue
# for r in rules:
# y.append(1.)
# X.append((prod, r))
# exists.add('{}_{}'.format(prod, r))
# # Generate negative examples
# target_size = len(X) * 2
# pbar = tqdm(total=target_size//2, desc='data prep (negative)')
# prods = list(prod_to_rules.keys())
# exprules = list(expansion_rules.keys())
# while len(X) < target_size:
# prod = random.choice(prods)
# rule = random.choice(exprules)
# key = '{}_{}'.format(prod, r)
# if key in exists:
# continue
# else:
# y.append(0.)
# X.append((prod, rule))
# pbar.update(1)
# pbar.close()
# print('Training size:', len(X))
# train(sess, filter, X, y, batch_size=512, epochs=3)
# saver.save(sess, ckpt_path)
# for v in tf.trainable_variables():
# print(v)