-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathanalysis.py
753 lines (602 loc) · 28.4 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
from __future__ import division
import sys
import os
import time
import math
import numpy as np
# File: analysis.py
# After classification, this file is used to evaluate the performance of the classifier and write the results to an output file.
# First, this file creates a confusion matrix and then computes the accuracy, sensitivity, specificity, MCC, and F1 Score at both
# the class level and the global level across the supplied number of folds (10 folds for cross validation and 1 fold for
# non-cross validation). This class also uses a basic metric of merely counting the number of correct classifications that was used
# initially to check the performance of the classifiers. After evaluating, the results are written to a file.
# global string variables for writing to file
tab = " "
newLine = "\n"
types = ["Interneuron", "S1 Pyramidal", "CA1 Pyramidal", "Oligodendrocyte", "Microglia",
"Endothelial", "Astrocyte", "Ependymal", "Mural"]
GVs = "Global Evaluations"
headerBar = " " + tab + "Accuracy" + tab + "Sensitivity" + tab + "Specificity" + tab + "MCC" + tab + "F1"
def analyzeAndWriteToFile(classifier, predictions, answerKey, foldsEvaluations, k, runOption):
topLevelDirName = "RNASeq_SingleCellClassification_Results"
# directory names for each of the 4 combinations of down sampling and cross validation
DSAndCVDirName = "DS & CV"
DSAndNotCVDirName = "DS & !CV"
NotDSAndCVDirName = "!DS & CV"
NotDSAndNotCVDirName = "!DS & !CV"
# date and time
date = time.strftime("%m-%d-%Y")
t = time.strftime("%I-%M-%S")
# make file name
clf = ""
if classifier == "Radial Basis Function Support Vector Machine":
clf = "rbfsvc"
elif classifier == "Multi-Layer Perceptron (Neural Network)":
clf = "nn"
elif classifier.startswith("KNearestNeighbor Classifier_"):
idx = classifier.index("_")
clf = "{k}knn".format(k=classifier[idx+1:])
elif classifier == "Random Forest Classifier":
clf = "rf"
fileName = clf + "_" + date + "_" + t + ".txt"
print "\nAnalyzing results and writing to file {fileName}".format(fileName=fileName)
# check if there is a 'results' directory in the project root
if not os.path.exists(topLevelDirName):
os.makedirs(topLevelDirName) # create the results directory heirarchy if not
os.makedirs(topLevelDirName + "/" + DSAndCVDirName)
os.makedirs(topLevelDirName + "/" + DSAndNotCVDirName)
os.makedirs(topLevelDirName + "/" + NotDSAndCVDirName)
os.makedirs(topLevelDirName + "/" + NotDSAndNotCVDirName)
# create the file in the newly created directory based on the run options selected
if runOption == 0:
if not os.path.exists(topLevelDirName + "/" + DSAndCVDirName):
os.makedirs(topLevelDirName + "/" + DSAndCVDirName)
file = open(topLevelDirName + "/" + DSAndCVDirName + "/" + fileName, "w+")
elif runOption == 1:
if not os.path.exists(topLevelDirName + "/" + DSAndNotCVDirName):
os.makedirs(topLevelDirName + "/" + DSAndNotCVDirName)
file = open(topLevelDirName + "/" + DSAndNotCVDirName + "/" + fileName, "w+")
elif runOption == 2:
if not os.path.exists(topLevelDirName + "/" + NotDSAndCVDirName):
os.makedirs(topLevelDirName + "/" + NotDSAndCVDirName)
file = open(topLevelDirName + "/" + NotDSAndCVDirName + "/" + fileName, "w+")
elif runOption == 3:
if not os.path.exists(topLevelDirName + "/" + NotDSAndNotCVDirName):
os.makedirs(topLevelDirName + "/" + NotDSAndNotCVDirName)
file = open(topLevelDirName + "/" + NotDSAndNotCVDirName + "/" + fileName, "w+")
print "** note: basic analysis only on final fold of cross validation"
accuracies = analyzeResultsBasic(classifier, predictions, answerKey)
sensitivities, specificities, mccs, f1Scores, globalVals = analyzeResultsRobust(foldsEvaluations, k)
# make sure the results lists are the correct size
if len(accuracies) != 9 and len(sensitivies) != 9 and len(specificities) != 9 and len(mccs) != 9 and len(f1Scores) != 9 and len(globalVals) != 5:
print "error: results list are incorrect size - cannot write to file"
file.close()
return
# write the header line to the file
file.write(headerBar)
# write the typed evaluations to the file
typeIterator = 0
while typeIterator < 9:
file.write(formatLine(types[typeIterator], accuracies[typeIterator], sensitivities[typeIterator],
specificities[typeIterator], mccs[typeIterator], f1Scores[typeIterator]))
typeIterator += 1
# write the global evaluations to the file
file.write(formatLine(GVs, globalVals[0], globalVals[1], globalVals[2], globalVals[3], globalVals[4]))
file.close()
return
def formatLine(type, accuracy, sensitivity, specificity, mcc, f1score):
line = newLine + type + tab + str(accuracy) + tab + str(sensitivity) + tab + str(specificity) + tab + str(mcc) + tab + str(f1score)
return line
# this will calculate and store a 2D list with evaluations for each type in the order [accuracy, sensitivity, specificity, MCC, F1]
def calculateEvaluations(predictions, answerKey):
# make sure lengths are equal
if len(predictions) != len(answerKey):
print "error: discrepancy between number of prediction results and answey keys"
# confusionMatrix = [truePositives, falsePositives, falseNegatives, trueNegatives]
foldEvaluations = []
iterator = 1
while iterator < 10: # confusion matrix for each type
confusionMatrix = calculateConfusionMatrix(predictions, answerKey, iterator)
foldEvaluation = calculateFoldEvaluations(confusionMatrix)
foldEvaluations.append(foldEvaluation)
iterator += 1
return foldEvaluations
def calculateFoldEvaluations(confusionMatrix):
# Reference:
# confusionMatrix = [truePositives, falsePositives, falseNegatives, trueNegatives]
# tp = 0
# fp = 1
# fn = 2
# tn = 3
# calculateAccurary(tp, tn, fp, fn)
accuracy = calculateAccurary(confusionMatrix[0], confusionMatrix[3], confusionMatrix[1], confusionMatrix[2])
# calculateSensitivity(tp, fn)
sensitivity = calculateSensitivity(confusionMatrix[0], confusionMatrix[2])
# calculateSpecificity(tn, fp)
specificity = calculateSpecificity(confusionMatrix[3], confusionMatrix[1])
# calculateMCC(tp, tn, fp, fn)
mcc = calculateMCC(confusionMatrix[0], confusionMatrix[3], confusionMatrix[1], confusionMatrix[2])
# calculateF1Score(tp, fp, fn):
f1Score = calculateF1Score(confusionMatrix[0], confusionMatrix[1], confusionMatrix[2])
foldEvaluation = [accuracy, sensitivity, specificity, mcc, f1Score]
return foldEvaluation
def analyzeResultsRobust(foldsEvaluations, k):
print "\nanalyzing evaluations for {k}-fold cross validation".format(k=k)
if len(foldsEvaluations) != k and len(foldsEvaluations[0]) != 9 and len(foldsEvaluations[0][0]) != 5:
print "error: 3D evaluations list is incorrect size"
return
# initialize values for avg accuracy, sensitivity, specificity, MCC, F1Score for each class and for all classes
type1AccuracyTotal = 0
type2AccuracyTotal = 0
type3AccuracyTotal = 0
type4AccuracyTotal = 0
type5AccuracyTotal = 0
type6AccuracyTotal = 0
type7AccuracyTotal = 0
type8AccuracyTotal = 0
type9AccuracyTotal = 0
type1SensitivityTotal = 0
type2SensitivityTotal = 0
type3SensitivityTotal = 0
type4SensitivityTotal = 0
type5SensitivityTotal = 0
type6SensitivityTotal = 0
type7SensitivityTotal = 0
type8SensitivityTotal = 0
type9SensitivityTotal = 0
type1SpecificityTotal = 0
type2SpecificityTotal = 0
type3SpecificityTotal = 0
type4SpecificityTotal = 0
type5SpecificityTotal = 0
type6SpecificityTotal = 0
type7SpecificityTotal = 0
type8SpecificityTotal = 0
type9SpecificityTotal = 0
type1MCCTotal = 0
type2MCCTotal = 0
type3MCCTotal = 0
type4MCCTotal = 0
type5MCCTotal = 0
type6MCCTotal = 0
type7MCCTotal = 0
type8MCCTotal = 0
type9MCCTotal = 0
type1F1ScoreTotal = 0
type2F1ScoreTotal = 0
type3F1ScoreTotal = 0
type4F1ScoreTotal = 0
type5F1ScoreTotal = 0
type6F1ScoreTotal = 0
type7F1ScoreTotal = 0
type8F1ScoreTotal = 0
type9F1ScoreTotal = 0
iterator = 0
while iterator < k:
#type 1 values
type1AccuracyTotal += foldsEvaluations[iterator][0][0]
type1SensitivityTotal += foldsEvaluations[iterator][0][1]
type1SpecificityTotal += foldsEvaluations[iterator][0][2]
type1MCCTotal += foldsEvaluations[iterator][0][3]
type1F1ScoreTotal += foldsEvaluations[iterator][0][4]
#type 2 values
type2AccuracyTotal += foldsEvaluations[iterator][1][0]
type2SensitivityTotal += foldsEvaluations[iterator][1][1]
type2SpecificityTotal += foldsEvaluations[iterator][1][2]
type2MCCTotal += foldsEvaluations[iterator][1][3]
type2F1ScoreTotal += foldsEvaluations[iterator][1][4]
#type 3 values
type3AccuracyTotal += foldsEvaluations[iterator][2][0]
type3SensitivityTotal += foldsEvaluations[iterator][2][1]
type3SpecificityTotal += foldsEvaluations[iterator][2][2]
type3MCCTotal += foldsEvaluations[iterator][2][3]
type3F1ScoreTotal += foldsEvaluations[iterator][2][4]
#type 4 values
type4AccuracyTotal += foldsEvaluations[iterator][3][0]
type4SensitivityTotal += foldsEvaluations[iterator][3][1]
type4SpecificityTotal += foldsEvaluations[iterator][3][2]
type4MCCTotal += foldsEvaluations[iterator][3][3]
type4F1ScoreTotal += foldsEvaluations[iterator][3][4]
#type 5 values
type5AccuracyTotal += foldsEvaluations[iterator][4][0]
type5SensitivityTotal += foldsEvaluations[iterator][4][1]
type5SpecificityTotal += foldsEvaluations[iterator][4][2]
type5MCCTotal += foldsEvaluations[iterator][4][3]
type5F1ScoreTotal += foldsEvaluations[iterator][4][4]
#type 6 values
type6AccuracyTotal += foldsEvaluations[iterator][5][0]
type6SensitivityTotal += foldsEvaluations[iterator][5][1]
type6SpecificityTotal += foldsEvaluations[iterator][5][2]
type6MCCTotal += foldsEvaluations[iterator][5][3]
type6F1ScoreTotal += foldsEvaluations[iterator][5][4]
#type 7 values
type7AccuracyTotal += foldsEvaluations[iterator][6][0]
type7SensitivityTotal += foldsEvaluations[iterator][6][1]
type7SpecificityTotal += foldsEvaluations[iterator][6][2]
type7MCCTotal += foldsEvaluations[iterator][6][3]
type7F1ScoreTotal += foldsEvaluations[iterator][6][4]
#type 8 values
type8AccuracyTotal += foldsEvaluations[iterator][7][0]
type8SensitivityTotal += foldsEvaluations[iterator][7][1]
type8SpecificityTotal += foldsEvaluations[iterator][7][2]
type8MCCTotal += foldsEvaluations[iterator][7][3]
type8F1ScoreTotal += foldsEvaluations[iterator][7][4]
#type 9 values
type9AccuracyTotal += foldsEvaluations[iterator][8][0]
type9SensitivityTotal += foldsEvaluations[iterator][8][1]
type9SpecificityTotal += foldsEvaluations[iterator][8][2]
type9MCCTotal += foldsEvaluations[iterator][8][3]
type9F1ScoreTotal += foldsEvaluations[iterator][8][4]
iterator += 1
# find averages for each type
avgAccuracyType1 = type1AccuracyTotal/k
avgSensitivityType1 = type1SensitivityTotal/k
avgSpecificityType1 = type1SpecificityTotal/k
avgMccType1 = type1MCCTotal/k
avgF1ScoreType1 = type1F1ScoreTotal/k
avgAccuracyType2 = type2AccuracyTotal/k
avgSensitivityType2 = type2SensitivityTotal/k
avgSpecificityType2 = type2SpecificityTotal/k
avgMccType2 = type2MCCTotal/k
avgF1ScoreType2 = type2F1ScoreTotal/k
avgAccuracyType3 = type3AccuracyTotal/k
avgSensitivityType3 = type3SensitivityTotal/k
avgSpecificityType3 = type3SpecificityTotal/k
avgMccType3 = type3MCCTotal/k
avgF1ScoreType3 = type3F1ScoreTotal/k
avgAccuracyType4 = type4AccuracyTotal/k
avgSensitivityType4 = type4SensitivityTotal/k
avgSpecificityType4 = type4SpecificityTotal/k
avgMccType4 = type4MCCTotal/k
avgF1ScoreType4 = type4F1ScoreTotal/k
avgAccuracyType5 = type5AccuracyTotal/k
avgSensitivityType5 = type5SensitivityTotal/k
avgSpecificityType5 = type5SpecificityTotal/k
avgMccType5 = type5MCCTotal/k
avgF1ScoreType5 = type5F1ScoreTotal/k
avgAccuracyType6 = type6AccuracyTotal/k
avgSensitivityType6 = type6SensitivityTotal/k
avgSpecificityType6 = type6SpecificityTotal/k
avgMccType6 = type6MCCTotal/k
avgF1ScoreType6 = type6F1ScoreTotal/k
avgAccuracyType7 = type7AccuracyTotal/k
avgSensitivityType7 = type7SensitivityTotal/k
avgSpecificityType7 = type7SpecificityTotal/k
avgMccType7 = type7MCCTotal/k
avgF1ScoreType7 = type7F1ScoreTotal/k
avgAccuracyType8 = type8AccuracyTotal/k
avgSensitivityType8 = type8SensitivityTotal/k
avgSpecificityType8 = type8SpecificityTotal/k
avgMccType8 = type8MCCTotal/k
avgF1ScoreType8 = type8F1ScoreTotal/k
avgAccuracyType9 = type9AccuracyTotal/k
avgSensitivityType9 = type9SensitivityTotal/k
avgSpecificityType9 = type9SpecificityTotal/k
avgMccType9 = type9MCCTotal/k
avgF1ScoreType9 = type9F1ScoreTotal/k
# find global values
accuracyTotal = avgAccuracyType1 + avgAccuracyType2 + avgAccuracyType3 + avgAccuracyType4 + avgAccuracyType5 + avgAccuracyType6 + avgAccuracyType7 + avgAccuracyType8 + avgAccuracyType9
sensitivityTotal = avgSensitivityType1 + avgSensitivityType2 + avgSensitivityType3 + avgSensitivityType4 + avgSensitivityType5 + avgSensitivityType6 + avgSensitivityType7 + avgSensitivityType8 + avgSensitivityType9
specificityTotal = avgSpecificityType1 + avgSpecificityType2 + avgSpecificityType3 + avgSpecificityType4 + avgSpecificityType5 + avgSpecificityType6 + avgSpecificityType7 + avgSpecificityType8 + avgSpecificityType9
mccTotal = avgMccType1 + avgMccType2 + avgMccType3 + avgMccType4 + avgMccType5 + avgMccType6 + avgMccType7 + avgMccType8 + avgMccType9
f1ScoreTotal = avgF1ScoreType1 + avgF1ScoreType2 + avgF1ScoreType3 + avgF1ScoreType4 + avgF1ScoreType5 + avgF1ScoreType6 + avgF1ScoreType7 + avgF1ScoreType8 + avgF1ScoreType9
# find global values
avgAccuracy = accuracyTotal/9
avgSensitivity = sensitivityTotal/9
avgSpecificity = specificityTotal/9
avgMcc = mccTotal/9
avgF1Score = f1ScoreTotal/9
# print "Average accuracy per type: (BUG)"
# print " - Type 1: {avgAccuracyType1}".format(avgAccuracyType1=avgAccuracyType1)
# print " - Type 2: {avgAccuracyType2}".format(avgAccuracyType2=avgAccuracyType2)
# print " - Type 3: {avgAccuracyType3}".format(avgAccuracyType3=avgAccuracyType3)
# print " - Type 4: {avgAccuracyType4}".format(avgAccuracyType4=avgAccuracyType4)
# print " - Type 5: {avgAccuracyType5}".format(avgAccuracyType5=avgAccuracyType5)
# print " - Type 6: {avgAccuracyType6}".format(avgAccuracyType6=avgAccuracyType6)
# print " - Type 7: {avgAccuracyType7}".format(avgAccuracyType7=avgAccuracyType7)
# print " - Type 8: {avgAccuracyType8}".format(avgAccuracyType8=avgAccuracyType8)
# print " - Type 9: {avgAccuracyType9}".format(avgAccuracyType9=avgAccuracyType9)
print "\nAverage sensitivity per type: "
print " - Type 1: {avgSensitivityType1}".format(avgSensitivityType1=avgSensitivityType1)
print " - Type 2: {avgSensitivityType2}".format(avgSensitivityType2=avgSensitivityType2)
print " - Type 3: {avgSensitivityType3}".format(avgSensitivityType3=avgSensitivityType3)
print " - Type 4: {avgSensitivityType4}".format(avgSensitivityType4=avgSensitivityType4)
print " - Type 5: {avgSensitivityType5}".format(avgSensitivityType5=avgSensitivityType5)
print " - Type 6: {avgSensitivityType6}".format(avgSensitivityType6=avgSensitivityType6)
print " - Type 7: {avgSensitivityType7}".format(avgSensitivityType7=avgSensitivityType7)
print " - Type 8: {avgSensitivityType8}".format(avgSensitivityType8=avgSensitivityType8)
print " - Type 9: {avgSensitivityType9}".format(avgSensitivityType9=avgSensitivityType9)
print "\nAverage specificity per type: "
print " - Type 1: {avgSpecificityType1}".format(avgSpecificityType1=avgSpecificityType1)
print " - Type 2: {avgSpecificityType2}".format(avgSpecificityType2=avgSpecificityType2)
print " - Type 3: {avgSpecificityType3}".format(avgSpecificityType3=avgSpecificityType3)
print " - Type 4: {avgSpecificityType4}".format(avgSpecificityType4=avgSpecificityType4)
print " - Type 5: {avgSpecificityType5}".format(avgSpecificityType5=avgSpecificityType5)
print " - Type 6: {avgSpecificityType6}".format(avgSpecificityType6=avgSpecificityType6)
print " - Type 7: {avgSpecificityType7}".format(avgSpecificityType7=avgSpecificityType7)
print " - Type 8: {avgSpecificityType8}".format(avgSpecificityType8=avgSpecificityType8)
print " - Type 9: {avgSpecificityType9}".format(avgSpecificityType9=avgSpecificityType9)
print "\nAverage MCC per type: "
print " - Type 1: {avgMccType1}".format(avgMccType1=avgMccType1)
print " - Type 2: {avgMccType2}".format(avgMccType2=avgMccType2)
print " - Type 3: {avgMccType3}".format(avgMccType3=avgMccType3)
print " - Type 4: {avgMccType4}".format(avgMccType4=avgMccType4)
print " - Type 5: {avgMccType5}".format(avgMccType5=avgMccType5)
print " - Type 6: {avgMccType6}".format(avgMccType6=avgMccType6)
print " - Type 7: {avgMccType7}".format(avgMccType7=avgMccType7)
print " - Type 8: {avgMccType8}".format(avgMccType8=avgMccType8)
print " - Type 9: {avgMccType9}".format(avgMccType9=avgMccType9)
print "\nAverage F1 Score per type: "
print " - Type 1: {avgF1ScoreType1}".format(avgF1ScoreType1=avgF1ScoreType1)
print " - Type 2: {avgF1ScoreType2}".format(avgF1ScoreType2=avgF1ScoreType2)
print " - Type 3: {avgF1ScoreType3}".format(avgF1ScoreType3=avgF1ScoreType3)
print " - Type 4: {avgF1ScoreType4}".format(avgF1ScoreType4=avgF1ScoreType4)
print " - Type 5: {avgF1ScoreType5}".format(avgF1ScoreType5=avgF1ScoreType5)
print " - Type 6: {avgF1ScoreType6}".format(avgF1ScoreType6=avgF1ScoreType6)
print " - Type 7: {avgF1ScoreType7}".format(avgF1ScoreType7=avgF1ScoreType7)
print " - Type 8: {avgF1ScoreType8}".format(avgF1ScoreType8=avgF1ScoreType8)
print " - Type 9: {avgF1ScoreType9}".format(avgF1ScoreType9=avgF1ScoreType9)
print "\n Average global values: "
print " - Accuracy: {avgAccuracy}".format(avgAccuracy=avgAccuracy)
print " - Sensitivity: {avgSensitivity}".format(avgSensitivity=avgSensitivity)
print " - Specificity: {avgSpecificity}".format(avgSpecificity=avgSpecificity)
print " - MCC: {avgMcc}".format(avgMcc=avgMcc)
print " - F1 Score: {avgF1Score}".format(avgF1Score=avgF1Score)
# make lists of each category to return to calling method (for write to file)
sensitivities = [avgSensitivityType1, avgSensitivityType2, avgSensitivityType3, avgSensitivityType4, avgSensitivityType5,
avgSensitivityType6, avgSensitivityType7, avgSensitivityType8, avgSensitivityType9]
specificities = [avgSpecificityType1, avgSpecificityType2, avgSpecificityType3, avgSpecificityType4, avgSpecificityType5,
avgSpecificityType6, avgSpecificityType7, avgSpecificityType8, avgSpecificityType9]
mccs = [avgMccType1, avgMccType2, avgMccType3, avgMccType4, avgMccType5, avgMccType6, avgMccType7, avgMccType8, avgMccType9]
f1Scores = [avgF1ScoreType1, avgF1ScoreType2, avgF1ScoreType3, avgF1ScoreType4, avgF1ScoreType5, avgF1ScoreType6,
avgF1ScoreType7, avgF1ScoreType8, avgF1ScoreType9]
globalVals = [avgAccuracy, avgSensitivity, avgSpecificity, avgMcc, avgF1Score]
return sensitivities, specificities, mccs, f1Scores, globalVals
def analyzeResultsBasic(classifier, predictions, answerKey):
print "\nanalyzing results for {classifier} classifier using basic metric".format(classifier=classifier)
# make sure lengths are equal
if len(predictions) != len(answerKey):
print "error: discrepancy between number of prediction results and answey keys"
return
# initialize lists for each identifier for prediction results and answer key
type1ResultsCount = 0
type1KeyCounts = 0
type2ResultsCount = 0
type2KeyCounts = 0
type3ResultsCount = 0
type3KeyCounts = 0
type4ResultsCount = 0
type4KeyCounts = 0
type5ResultsCount = 0
type5KeyCounts = 0
type6ResultsCount = 0
type6KeyCounts = 0
type7ResultsCount = 0
type7KeyCounts = 0
type8ResultsCount = 0
type8KeyCounts = 0
type9ResultsCount = 0
type9KeyCounts = 0
# find the counts for each type in the predicion results
for _type in predictions:
if _type == 1:
type1ResultsCount += 1
elif _type == 2:
type2ResultsCount += 1
elif _type == 3:
type3ResultsCount += 1
elif _type == 4:
type4ResultsCount += 1
elif _type == 5:
type5ResultsCount += 1
elif _type == 6:
type6ResultsCount += 1
elif _type == 7:
type7ResultsCount += 1
elif _type == 8:
type8ResultsCount += 1
elif _type == 9:
type9ResultsCount += 1
# find the counts for each type in the answer key
for _type in answerKey:
if _type == 1:
type1KeyCounts += 1
elif _type == 2:
type2KeyCounts += 1
elif _type == 3:
type3KeyCounts += 1
elif _type == 4:
type4KeyCounts += 1
elif _type == 5:
type5KeyCounts += 1
elif _type == 6:
type6KeyCounts += 1
elif _type == 7:
type7KeyCounts += 1
elif _type == 8:
type8KeyCounts += 1
elif _type == 9:
type9KeyCounts += 1
# we need to establish a metric to penalize over classification i.e. classifying 9 cells as type 1 when only 8 cells are type 1
# we'll find the proportion of 1 cell/all cells of type and subtract this with each over classified cell
type1Proportion = calculateProportion(1, type1KeyCounts)
type2Proportion = calculateProportion(1, type2KeyCounts)
type3Proportion = calculateProportion(1, type3KeyCounts)
type4Proportion = calculateProportion(1, type4KeyCounts)
type5Proportion = calculateProportion(1, type5KeyCounts)
type6Proportion = calculateProportion(1, type6KeyCounts)
type7Proportion = calculateProportion(1, type7KeyCounts)
type8Proportion = calculateProportion(1, type8KeyCounts)
type9Proportion = calculateProportion(1, type9KeyCounts)
# type9Proportion = 1/type9KeyCounts
# check each result for over classification, and substract accordingly. else, set by proportion
type1Results = -1.
if type1ResultsCount > type1KeyCounts:
type1Results = 1.0 - (type1Proportion*(type1ResultsCount - type1KeyCounts))
else:
type1Results = calculateProportion(type1ResultsCount, type1KeyCounts)
type2Results = -1.
if type2ResultsCount > type2KeyCounts:
type2Results = 1.0 - (type2Proportion*(type2ResultsCount - type2KeyCounts))
else:
type2Results = calculateProportion(type2ResultsCount, type2KeyCounts)
type3Results = -1.
if type3ResultsCount > type3KeyCounts:
type3Results = 1.0 - (type3Proportion*(type3ResultsCount - type3KeyCounts))
else:
type3Results = calculateProportion(type3ResultsCount, type3KeyCounts)
type4Results = -1.
if type4ResultsCount > type4KeyCounts:
type4Results = 1.0 - (type4Proportion*(type4ResultsCount - type4KeyCounts))
else:
type4Results = calculateProportion(type4ResultsCount, type4KeyCounts)
type5Results = -1.
if type5ResultsCount > type5KeyCounts:
type5Results = 1.0 - (type5Proportion*(type5ResultsCount - type5KeyCounts))
else:
type5Results = calculateProportion(type5ResultsCount, type5KeyCounts)
type6Results = -1.
if type6ResultsCount > type6KeyCounts:
type6Results = 1.0 - (type6Proportion*(type6ResultsCount - type6KeyCounts))
else:
type6Results = calculateProportion(type6ResultsCount, type6KeyCounts)
type7Results = -1.
if type7ResultsCount > type7KeyCounts:
type7Results = 1.0 - (type7Proportion*(type7ResultsCount - type7KeyCounts))
else:
type7Results = calculateProportion(type7ResultsCount, type7KeyCounts)
type8Results = -1.
if type8ResultsCount > type8KeyCounts:
type8Results = 1.0 - (type8Proportion*(type8ResultsCount - type8KeyCounts))
else:
type8Results = calculateProportion(type8ResultsCount, type8KeyCounts)
type9Results = -1.
if type9ResultsCount > type9KeyCounts:
type9Results = 1.0 - (type9Proportion*(type9ResultsCount - type9KeyCounts))
else:
type9Results = calculateProportion(type9ResultsCount, type9KeyCounts)
# compute total prediction results
totalPredictionResults = calculateTotalAccuracy(type1Results, type2Results, type3Results, type4Results, type5Results,
type6Results, type7Results, type8Results, type9Results)
print "Accuracy determined by:"
print "if number of predictions > total known cells of type:"
print " accuracy = 1.0 - ((1/number_cells_type) * (number of predictions - known number of cells)"
print "else:"
print " accuracy = Number_of_Type_Predicted / Actual_Number_of_Type"
print "Type 1 accuracy (predictions: {type1ResultsCount}, known: {type1KeyCounts}) = {type1Results}".format(type1ResultsCount=type1ResultsCount,
type1KeyCounts=type1KeyCounts, type1Results=type1Results)
print "Type 2 accuracy (predictions: {type2ResultsCount}, known: {type2KeyCounts}) = {type2Results}".format(type2ResultsCount=type2ResultsCount,
type2KeyCounts=type2KeyCounts, type2Results=type2Results)
print "Type 3 accuracy (predictions: {type3ResultsCount}, known: {type3KeyCounts}) = {type3Results}".format(type3ResultsCount=type3ResultsCount,
type3KeyCounts=type3KeyCounts, type3Results=type3Results)
print "Type 4 accuracy (predictions: {type4ResultsCount}, known: {type4KeyCounts}) = {type4Results}".format(type4ResultsCount=type4ResultsCount,
type4KeyCounts=type4KeyCounts, type4Results=type4Results)
print "Type 5 accuracy (predictions: {type5ResultsCount}, known: {type5KeyCounts}) = {type5Results}".format(type5ResultsCount=type5ResultsCount,
type5KeyCounts=type5KeyCounts, type5Results=type5Results)
print "Type 6 accuracy (predictions: {type6ResultsCount}, known: {type6KeyCounts}) = {type6Results}".format(type6ResultsCount=type6ResultsCount,
type6KeyCounts=type6KeyCounts, type6Results=type6Results)
print "Type 7 accuracy (predictions: {type7ResultsCount}, known: {type7KeyCounts}) = {type7Results}".format(type7ResultsCount=type7ResultsCount,
type7KeyCounts=type7KeyCounts, type7Results=type7Results)
print "Type 8 accuracy (predictions: {type8ResultsCount}, known: {type8KeyCounts}) = {type8Results}".format(type8ResultsCount=type8ResultsCount,
type8KeyCounts=type8KeyCounts, type8Results=type8Results)
print "Type 9 accuracy (predictions: {type9ResultsCount}, known: {type9KeyCounts}) = {type9Results}".format(type9ResultsCount=type9ResultsCount,
type9KeyCounts=type9KeyCounts, type9Results=type9Results)
print "Total accuracy (non_zero_prediction_results/num_non_zero_values) = {totalPredictionResults}".format(totalPredictionResults=totalPredictionResults)
# make list of basic accuracies
accuracies = [type1Results, type2Results, type3Results, type4Results, type5Results, type6Results, type7Results, type8Results, type9Results]
return accuracies
def calculateProportion(n, total):
if total < 1:
return -1
return n/total
def calculateTotalAccuracy(type1Results, type2Results, type3Results, type4Results, type5Results, type6Results, type7Results
, type8Results, type9Results):
total = 0
posValues = 0
if type1Results != -1:
total += type1Results
posValues += 1
if type2Results != -1:
total += type2Results
posValues += 1
if type3Results != -1:
total += type3Results
posValues += 1
if type4Results != -1:
total += type4Results
posValues += 1
if type5Results != -1:
total += type5Results
posValues += 1
if type6Results != -1:
total += type6Results
posValues += 1
if type7Results != -1:
total += type7Results
posValues += 1
if type8Results != -1:
total += type8Results
posValues += 1
if type9Results != -1:
total += type9Results
posValues += 1
return total/posValues
def calculateConfusionMatrix(predictions, answerKey, _type):
# compute the confusion matrix (true positive, false negative, false positive, true negative) for the given type
if len(predictions) != len(answerKey):
print "error: discrepancy between number of predictions and answer key"
size = len(predictions)
truePositives = 0
falsePositives = 0
falseNegatives = 0
trueNegatives = 0
iterator = 0
while iterator < size:
prediction = predictions[iterator]
key = answerKey[iterator]
if key == _type:
# if prediction matches, true positive / else, false negative
if prediction == key:
truePositives += 1
else:
falseNegatives += 1
else: # if key is "other" type
# if prediction matches, true negative ("other" classified as same "other") / else, false positive ("other" classified as type)
if prediction == key:
trueNegatives += 1
else:
falsePositives += 1
iterator += 1
# print "tp, fp, fn, tn = {tp}, {fp}, {fn}, {tn}".format(tp=truePositives, fp=falsePositives, fn=falseNegatives, tn=trueNegatives)
confusionMatrix = [truePositives, falsePositives, falseNegatives, trueNegatives]
return confusionMatrix
def calculateAccurary(tp, tn, fp, fn):
numerator = (tp + tn)
denominator = (tp + fp + fn + tn)
if denominator > 0:
return numerator / denominator
return 0.
def calculateSensitivity(tp, fn):
numerator = tp
denominator = tp + fn
if denominator > 0:
return numerator / denominator
return 0.
def calculateSpecificity(tn, fp):
numerator = tn
denominator = tn + fp
if denominator > 0:
return numerator / denominator
return 0.
def calculateMCC(tp, tn, fp, fn):
numerator = ((tp * tn) - (fp * fn))
denominator = math.sqrt((tp + fp)*(tp + fn)*(tn + fp)*(tn + fn))
if denominator > 0:
return numerator / denominator
return 0.
def calculateF1Score(tp, fp, fn):
numerator = (2 * tp)
denominator = ((2 * tp) + fp + fn)
if denominator > 0:
return numerator / denominator
return 0.