-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathneuralNetwork_RNASeq.py
37 lines (28 loc) · 1.31 KB
/
neuralNetwork_RNASeq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from sklearn.neural_network import MLPClassifier
import numpy as np
# File: neuralNetwork_RNASeq.py
# This file defines the Multi-Layer Perceptron (Neural Network). It fits the training data and the
# samples to the classifier. Then, it takes training data and makes predictions, returning the
# results of the predictions.
mlpClf = MLPClassifier(activation='relu', algorithm='adam', alpha=1e-05,
batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(100,), learning_rate='constant',
learning_rate_init=0.001, max_iter=200, momentum=0.9,
nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
tol=0.0001, validation_fraction=0.1, verbose=False,
warm_start=False)
# Source: http://scikit-learn.org/dev/modules/neural_networks_supervised.html
def fitTrainingData(training_data, nSamples):
# fit(X,Y)
# x = 2D array of cells
# y = 1D list of classifiers i.e. [group1, group1, group2, group2]
# makes lists into np arrays
training_dataNP = np.array(training_data)
nSamplesNP = np.array(nSamples)
mlpClf.fit(training_dataNP, nSamplesNP)
def predictTestData(testing_data):
# make list into np array
testing_dataNP = np.array(testing_data)
# predict the values
predicted = mlpClf.predict(testing_dataNP)
return predicted