forked from pymc-devs/pymc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsampling_jax.py
182 lines (144 loc) · 5.67 KB
/
sampling_jax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# pylint: skip-file
import os
import re
import warnings
xla_flags = os.getenv("XLA_FLAGS", "").lstrip("--")
xla_flags = re.sub(r"xla_force_host_platform_device_count=.+\s", "", xla_flags).split()
os.environ["XLA_FLAGS"] = " ".join(["--xla_force_host_platform_device_count={}".format(100)])
import arviz as az
import jax
import numpy as np
import pandas as pd
import theano.graph.fg
from theano.link.jax.jax_dispatch import jax_funcify
import pymc3 as pm
from pymc3 import modelcontext
warnings.warn("This module is experimental.")
# Disable C compilation by default
# theano.config.cxx = ""
# This will make the JAX Linker the default
# theano.config.mode = "JAX"
def sample_tfp_nuts(
draws=1000,
tune=1000,
chains=4,
target_accept=0.8,
random_seed=10,
model=None,
num_tuning_epoch=2,
num_compute_step_size=500,
):
import jax
from tensorflow_probability.substrates import jax as tfp
model = modelcontext(model)
seed = jax.random.PRNGKey(random_seed)
fgraph = theano.graph.fg.FunctionGraph(model.free_RVs, [model.logpt])
fns = jax_funcify(fgraph)
logp_fn_jax = fns[0]
rv_names = [rv.name for rv in model.free_RVs]
init_state = [model.test_point[rv_name] for rv_name in rv_names]
init_state_batched = jax.tree_map(lambda x: np.repeat(x[None, ...], chains, axis=0), init_state)
@jax.pmap
def _sample(init_state, seed):
def gen_kernel(step_size):
hmc = tfp.mcmc.NoUTurnSampler(target_log_prob_fn=logp_fn_jax, step_size=step_size)
return tfp.mcmc.DualAveragingStepSizeAdaptation(
hmc, tune // num_tuning_epoch, target_accept_prob=target_accept
)
def trace_fn(_, pkr):
return pkr.new_step_size
def get_tuned_stepsize(samples, step_size):
return step_size[-1] * jax.numpy.std(samples[-num_compute_step_size:])
step_size = jax.tree_map(jax.numpy.ones_like, init_state)
for i in range(num_tuning_epoch - 1):
tuning_hmc = gen_kernel(step_size)
init_samples, tuning_result, kernel_results = tfp.mcmc.sample_chain(
num_results=tune // num_tuning_epoch,
current_state=init_state,
kernel=tuning_hmc,
trace_fn=trace_fn,
return_final_kernel_results=True,
seed=seed,
)
step_size = jax.tree_multimap(get_tuned_stepsize, list(init_samples), tuning_result)
init_state = [x[-1] for x in init_samples]
# Run inference
sample_kernel = gen_kernel(step_size)
mcmc_samples, leapfrog_num = tfp.mcmc.sample_chain(
num_results=draws,
num_burnin_steps=tune // num_tuning_epoch,
current_state=init_state,
kernel=sample_kernel,
trace_fn=lambda _, pkr: pkr.inner_results.leapfrogs_taken,
seed=seed,
)
return mcmc_samples, leapfrog_num
print("Compiling...")
tic2 = pd.Timestamp.now()
map_seed = jax.random.split(seed, chains)
mcmc_samples, leapfrog_num = _sample(init_state_batched, map_seed)
# map_seed = jax.random.split(seed, chains)
# mcmc_samples = _sample(init_state_batched, map_seed)
# tic4 = pd.Timestamp.now()
# print("Sampling time = ", tic4 - tic3)
posterior = {k: v for k, v in zip(rv_names, mcmc_samples)}
az_trace = az.from_dict(posterior=posterior)
tic3 = pd.Timestamp.now()
print("Compilation + sampling time = ", tic3 - tic2)
return az_trace # , leapfrog_num, tic3 - tic2
def sample_numpyro_nuts(
draws=1000,
tune=1000,
chains=4,
target_accept=0.8,
random_seed=10,
model=None,
progress_bar=True,
):
from numpyro.infer import MCMC, NUTS
from pymc3 import modelcontext
model = modelcontext(model)
seed = jax.random.PRNGKey(random_seed)
fgraph = theano.graph.fg.FunctionGraph(model.free_RVs, [model.logpt])
fns = jax_funcify(fgraph)
logp_fn_jax = fns[0]
rv_names = [rv.name for rv in model.free_RVs]
init_state = [model.test_point[rv_name] for rv_name in rv_names]
init_state_batched = jax.tree_map(lambda x: np.repeat(x[None, ...], chains, axis=0), init_state)
@jax.jit
def _sample(current_state, seed):
step_size = jax.tree_map(jax.numpy.ones_like, init_state)
nuts_kernel = NUTS(
potential_fn=lambda x: -logp_fn_jax(*x),
# model=model,
target_accept_prob=target_accept,
adapt_step_size=True,
adapt_mass_matrix=True,
dense_mass=False,
)
pmap_numpyro = MCMC(
nuts_kernel,
num_warmup=tune,
num_samples=draws,
num_chains=chains,
postprocess_fn=None,
chain_method="parallel",
progress_bar=progress_bar,
)
pmap_numpyro.run(seed, init_params=current_state, extra_fields=("num_steps",))
samples = pmap_numpyro.get_samples(group_by_chain=True)
leapfrogs_taken = pmap_numpyro.get_extra_fields(group_by_chain=True)["num_steps"]
return samples, leapfrogs_taken
print("Compiling...")
tic2 = pd.Timestamp.now()
map_seed = jax.random.split(seed, chains)
mcmc_samples, leapfrogs_taken = _sample(init_state_batched, map_seed)
# map_seed = jax.random.split(seed, chains)
# mcmc_samples = _sample(init_state_batched, map_seed)
# tic4 = pd.Timestamp.now()
# print("Sampling time = ", tic4 - tic3)
posterior = {k: v for k, v in zip(rv_names, mcmc_samples)}
az_trace = az.from_dict(posterior=posterior)
tic3 = pd.Timestamp.now()
print("Compilation + sampling time = ", tic3 - tic2)
return az_trace # , leapfrogs_taken, tic3 - tic2