forked from dapowan/LIMU-BERT-Public
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmotion.py
101 lines (86 loc) · 3.8 KB
/
motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2021/01/07 15:01
# @Author : Huatao
# @Email : [email protected]
# @File : motion.py
# @Description : https://github.com/mmalekzadeh/motion-sense
import os
import numpy as np
import pandas as pd
DATASET_PATH = r'D:\Dataset_Mobility\MotionSense'
ACTIVITY_NAMES = ["dws", "ups", "sit", "std", "wlk", "jog"]
SAMPLE_WINDOW = 20
def label_activity(name):
for i in range(len(ACTIVITY_NAMES)):
if name.startswith(ACTIVITY_NAMES[i]):
return i
def label_user(name):
temp = name.split(".")[0]
id = int(temp.split("_")[1])
return id - 1
def down_sample(data, window_target):
window_sample = window_target * 1.0 / SAMPLE_WINDOW
result = []
if window_sample.is_integer():
window = int(window_sample)
for i in range(0, len(data), window):
slice = data[i: i + window, :]
result.append(np.mean(slice, 0))
else:
window = int(window_sample)
remainder = 0.0
i = 0
while 0 <= i + window + 1 < data.shape[0]:
remainder += window_sample - window
if remainder >= 1:
remainder -= 1
slice = data[i: i + window + 1, :]
# print('i: %d, window: %d, start: %d, end: %d' % (i, window, start, end))
result.append(np.mean(slice, 0))
i += window + 1
else:
slice = data[i: i + window, :]
result.append(np.mean(slice, 0))
# print('i: %d, window: %d, start: %d, end: %d' % (i, window + 1, start, end))
i += window
return np.array(result)
def load_sensor_data(path, seq_len, target_window):
data = []
label = []
for root, dirs, files in os.walk(path):
for dir in dirs:
path_act = os.path.join(root, dir)
label_act = label_activity(dir)
for root_exp, dirs_exp, files_exp in os.walk(path_act):
for name in files_exp:
path_exp = os.path.join(root_exp, name)
label_u = label_user(name)
sensor = np.loadtxt(path_exp, skiprows=1, delimiter=',')
sensor_down = down_sample(sensor[:, 1:], target_window)
if sensor_down.shape[0] > seq_len:
sensor_down = sensor_down[:sensor_down.shape[0] // seq_len * seq_len, :]
sensor_down = sensor_down.reshape(sensor_down.shape[0] // seq_len, seq_len, sensor_down.shape[1])
sensor_label = np.ones((sensor_down.shape[0], sensor_down.shape[1], 1))
sensor_label = np.concatenate([sensor_label * label_act, sensor_label * label_u], 2)
data.append(sensor_down)
label.append(sensor_label)
return data, label
def preprocess(path, path_save, version, target_window=50, seq_len=20):
data_acc, label_acc = load_sensor_data(os.path.join(path, 'Accelerometer'), seq_len, target_window)
data_gyro, label_gyro = load_sensor_data(os.path.join(path, 'Gyroscope'), seq_len, target_window)
data = []
label = []
for i in range(len(data_acc)):
len_min = min(data_acc[i].shape[0], data_gyro[i].shape[0])
data.append(np.concatenate([data_acc[i][:len_min] * 9.8, data_gyro[i][:len_min]], 2))
label.append(label_acc[i][:len_min, :, :])
data = np.concatenate(data, 0)
label = np.concatenate(label, 0)
print('All data processed. Size: %d' % (data.shape[0]))
np.save(os.path.join(path_save, 'data_' + version + '.npy'), np.array(data))
np.save(os.path.join(path_save, 'label_' + version + '.npy'), np.array(label))
return data, label
path_save = r'motion'
version = r'20_120'
data, label = preprocess(DATASET_PATH, path_save, version, seq_len=120)