-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimWM_MultiRecRnd_new_att_learn.m
382 lines (331 loc) · 17.9 KB
/
SimWM_MultiRecRnd_new_att_learn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
function [r_rec, r_rnd, t, opts] = SimWM_MultiRecRnd_new_att_learn(varargin),
% Simulates a recurrent 'working memory' network as well as randomly
% connected coupled network.
%% Parse optional inputs
opts.RunningPlot = 0; %whether or not to plot as we simulate
opts.SimTime = 2; %time to simulate, in seconds
opts.dt = 0.1/1000; %time step, in seconds
opts.Output_dt = 1/1000; %time step, in seconds, of the output
opts.b = 0; %bias in the firing response
opts.RecSynapseTau = 10/1000; %synapse tau, in seconds
opts.RndSynapseTau = 10/1000; %synapse tau, in seconds
opts.fI_Slope = 0.4; %slope of the non-linear f-I function
opts.RecActFxn = [];
opts.RndActFxn = [];
opts.InitSynapseRange = 0.01;
%Divisive normalization constants
opts.MaxAvgRecFR = 100;
opts.MaxAvgRndFR = 100;
opts.DivNormTau = 5/1000; %in seconds
%Recurrent pool information
opts.N_rec_pools = 8; %# of recurrent neuron pools
opts.PoolWBaseline = 0; %baseline weight between recurrent pools (scaled for # of neurons)
opts.PoolWRandom = 0; %+/- range of random weights between recurrent pools (scaled for # of neurons)
opts.N_rec = 512; %# of recurrent neurons per pool
opts.RecWBaseline = 0.28; %baseline of weight matrix for recurrent network
opts.RecWAmp = 2; %amplitude of weight function
opts.RecWPositiveWidth = 1; %width of positive amplification
opts.RecWNegativeWidth = 0.25; %width of negative surround suppression
opts.N_rnd = 1024; %# of randomly-connected neurons
opts.RndWBaseline = 0; %Baseline inhibition between neurons in random network
opts.RndWSelf = 0; %Self-excitation in random network
opts.RndRec_f = 0.2; %likelihood of connection to/from any given recurrent neuron and a random neuron
opts.RecToRndW_NormalizeByNumConnections = 1; %if true, normalizes by the percentage of connections
opts.RecToRndW_TargetFR = 0.5; %firing rate needed in the recurrent network to drive random network to 20 Hz (scales weights)
opts.RecToRndW_EIBalance = -1;
opts.RecToRndW_Baseline = 0; %baseline weight from recurrent network to random network, regardless of connection existing
opts.RndToRecW_NormalizeByNumConnections = 1; %if true, normalizes by the percentage of connections
opts.RndToRecW_TargetFR = 0.25; %firing rate needed in the random network to drive recurrent network to 20 Hz (scales weights)
opts.RndToRecW_EIBalance = -1;
opts.RndToRecW_Baseline = 0; %baseline weight from recurrent network to random network, regardless of connection existing
%Input vector into recurrent network
opts.InputBaseline = 0; %strength of random inputs
opts.InputCenter = ceil(rand(1, opts.N_rec_pools)*opts.N_rec);
opts.InputWidth = round(opts.N_rec/32)*ones(1, opts.N_rec_pools);
opts.InputTime = repmat([0.1 0.2]', [1 opts.N_rec_pools]); %in seconds
opts.InputValue = 10*ones(1, opts.N_rec_pools); %strength of input (current injection)
%Attention input -- set to a random pool for now
opts.AttInputTime = NaN*ones(2, opts.N_rec_pools); opts.AttInputTime(:, randsample(opts.N_rec_pools, 1)) = [1 1.25];
opts.AttInputValue = 10*ones(1, opts.N_rec_pools); %strength of input (current injection)
%Learning constants and rates
opts.UseLearning = 0; %whether or not to use learning rule
opts.Learning_AllToAll = 1; %if 1, then all pre-synaptic spikes are considered when making weight changes; if 0, only the most recent spike is counted
opts.Learning_WMinMaxRatio = [0.25 4]; %Range of 'allowed' weights, expressed as a ratio of the starting weights; gets converted into opts.Learning_WMinMax later
%Following Gutig et al, JNeurosci 2003 for learning rule
opts.Learning_Rate = 0.001; %should be small, so updates are limited
opts.Learning_mu = 0.25; %this controls the shape of weight dependency
opts.Learning_Tau = 20/1000; %tau (in s) of facilitation part of STDP curve
opts.Learning_FacDepBalance = 1.5; %the difference in integral of the depression/facilatition (the alpha term in Gutig et al)
%Process optional inputs
if mod(length(varargin), 2) ~= 0, error('Must pass key/value pairs for options.'); end
for i = 1:2:length(varargin),
%Check to see if this is an option for the adding to the processing
%stream
if isfield(opts, varargin{i}),
opts.(varargin{i}) = varargin{i+1};
else
error(sprintf('Unknown parameter %s passed.', varargin{i}));
end
end
%% Initialize network
%Define time
t = [0:opts.dt:opts.SimTime];
%Define activation functions
if isempty(opts.RecActFxn),
%opts.ActFxn = @(g) 0.2/opts.SynapseTau*(1 + tanh(opts.fI_Slope*g - 3));
opts.RecActFxn = @(g) 0.4/opts.RecSynapseTau*(1 + tanh(opts.fI_Slope*g - 3));
%opts.RecActFxn = @(g) max(0, opts.fI_Slope*g - 0);
end
if isempty(opts.RndActFxn),
%opts.RndActFxn = @(g) 2*0.2/opts.RndSynapseTau*heaviside(g - 6);%@(g) 0.2/opts.RndSynapseTau*(1 + tanh(opts.fI_Slope*g - 3));
opts.RndActFxn = @(g) 0.4/opts.RndSynapseTau*(1 + tanh(opts.fI_Slope*g - 3));
%opts.RndActFxn = @(g) max(0, opts.fI_Slope*g - 0);
end
%Define recurrent weight matrix, this will be identical for all recurrent pools
w_fun = @(x) opts.RecWBaseline + opts.RecWAmp*exp(opts.RecWPositiveWidth*(cos(x) - 1)) ...
- opts.RecWAmp*exp(opts.RecWNegativeWidth*(cos(x) - 1));
ang = 2*pi*[1:opts.N_rec]./opts.N_rec;
W_rec = NaN*ones(opts.N_rec, opts.N_rec);
for i = 1:opts.N_rec,
for j = 1:opts.N_rec,
W_rec(i,j) = w_fun(ang(i) - ang(j));
if i == j, W_rec(i,j) = 0; end
end
end
%Define the inter-pool recurrent weight matrices
W_rec_rec = cell(opts.N_rec_pools, opts.N_rec_pools);
for i = 1:opts.N_rec_pools,
for j = 1:opts.N_rec_pools,
if i == j, continue; end
W_rec_rec{i,j} = opts.PoolWBaseline + opts.PoolWRandom*2*(rand(opts.N_rec, opts.N_rec) - 0.5);
W_rec_rec{i,j} = W_rec_rec{i,j}./(opts.N_rec.*(opts.N_rec_pools - 1));
end
end
%Initialize synaptic activation for recurrent network(s)
s_rec = opts.InitSynapseRange*rand(opts.N_rec, opts.N_rec_pools);
a_rec = false(opts.N_rec, opts.N_rec_pools);
r_rec = NaN*ones(opts.N_rec, opts.N_rec_pools, length(t));
stdp_rec = zeros(opts.N_rec, opts.N_rec_pools);
%Initialize random weight matrix -- should be symmetric (gets/sends signals
%to same neurons in recurrent network)
W_rec_rnd = opts.RndToRecW_Baseline*ones(opts.N_rec*opts.N_rec_pools, opts.N_rnd);
W_rnd_rec = opts.RecToRndW_Baseline*ones(opts.N_rnd, opts.N_rec*opts.N_rec_pools);
for i = 1:opts.N_rec*opts.N_rec_pools,
%temp_con = (rand([1 opts.N_rnd]) <= opts.RndRec_f);
temp_con = false(1, opts.N_rnd);
temp_con(randsample(opts.N_rnd, round(opts.RndRec_f*opts.N_rnd), 0)) = true;
W_rec_rnd(i, temp_con) = W_rec_rnd(i, temp_con) + (1/0.1)/0.01*opts.RndToRecW_TargetFR./sum(temp_con); %this should give ~1 spike per input spike
W_rec_rnd(i, :) = W_rec_rnd(i, :) + opts.RndToRecW_EIBalance*((1/0.1)/0.01*opts.RndToRecW_TargetFR)./opts.N_rnd;
W_rnd_rec(temp_con, i) = W_rnd_rec(temp_con, i) + (1/0.1)/0.01*opts.RecToRndW_TargetFR./sum(temp_con); %this should give ~1 spike per input spike
W_rnd_rec(:, i) = W_rnd_rec(:, i) + opts.RecToRndW_EIBalance*((1/0.1)/0.01*opts.RecToRndW_TargetFR)./opts.N_rnd;
end %random neurons
%Use this to determine the weight range
opts.Learning_WMinMax_RecRnd = opts.Learning_WMinMaxRatio*mean(W_rec_rnd(:) > 0);
opts.Learning_WMinMax_RndRec = opts.Learning_WMinMaxRatio*mean(W_rnd_rec(:) > 0);
%Recurrence within the random network
W_rnd = opts.RndWBaseline*ones(opts.N_rnd, opts.N_rnd);
W_rnd([0:(opts.N_rnd-1)]*(opts.N_rnd + 1) + 1) = opts.RndWSelf;
%Plot input matrices
if opts.RunningPlot,
weight_fig = figure;
subplot(2,2,1);
imagesc(ang, ang, W_rec'); xlabel('Rec To'); ylabel('Rec From');
colorbar;
subplot(2,2,2);
imagesc(ang, [1:opts.N_rnd], W_rec_rnd');xlabel('Rec To'); ylabel('Rnd From');
title('Starting Weights');
colorbar;
subplot(2,2,3);
imagesc([1:opts.N_rnd], [1:opts.N_rnd], W_rnd'); xlabel('Rnd To'); ylabel('Rnd From');
colorbar;
subplot(2,2,4);
imagesc(ang, [1:opts.N_rnd], W_rec_rnd');xlabel('Rec To'); ylabel('Rnd From');
title('Current Weights');
colorbar;
end
%Initialize synaptic activation for random
s_rnd = opts.InitSynapseRange*rand(opts.N_rnd, 1);
a_rnd = false(opts.N_rnd, 1);
r_rnd = NaN*ones(opts.N_rnd, length(t));
stdp_rnd = zeros(opts.N_rnd, 1);
%% Simulate networks
if opts.RunningPlot, line_fig = figure; end
for t_ind = 1:length(t),
%Update synaptic activation variables for recurrent networks
for cp = 1:opts.N_rec_pools,
dsdt = -s_rec(:, cp)./opts.RecSynapseTau + a_rec(:, cp)./opts.dt;
s_rec(:, cp) = s_rec(:, cp) + dsdt*opts.dt;
%Also update STDP variables
if opts.Learning_AllToAll,
dstdp_dt = -stdp_rec(:, cp)./opts.Learning_Tau + a_rec(:, cp)./opts.dt;
else
dstdp_dt = -stdp_rec(:, cp)./opts.Learning_Tau.*(~a_rec(:, cp)) + (1 - stdp_rec(:, cp)./opts.dt).*a_rec(:, cp);
end
stdp_rec(:, cp) = stdp_rec(:, cp) + dstdp_dt*opts.dt;
end
%Update synaptic activation variables for random network
dsdt = -s_rnd./opts.RndSynapseTau + a_rnd./opts.dt;
s_rnd = s_rnd + dsdt*opts.dt;
%Update STDP variables for random network
if opts.Learning_AllToAll,
dstdp_dt = -stdp_rnd./opts.Learning_Tau + a_rnd./opts.dt;
else
dstdp_dt = -stdp_rnd./opts.Learning_Tau.*(~a_rnd) + (1 - stdp_rnd./opts.dt).*a_rnd;
end
stdp_rnd = stdp_rnd + dstdp_dt*opts.dt;
%Update weights from recurrent pools to random network
norm_W_rnd_rec = (W_rnd_rec - opts.Learning_WMinMax_RndRec(1))./(opts.Learning_WMinMax_RndRec(2) - opts.Learning_WMinMax_RndRec(1));
dW = -opts.Learning_Rate*opts.Learning_FacDepBalance*((norm_W_rnd_rec.^opts.Learning_mu)*repmat(stdp_rec(:), [1 opts.N_rec*opts.N_rec_pools])).*repmat(~a_rnd, [1 opts.N_rec*opts.N_rec_pools]) + ...
opts.Learning_Rate*(((1 - norm_W_rnd_rec).^opts.Learning_mu)*repmat(stdp_rec(:), [1 opts.N_rec*opts.N_rec_pools])).*repmat(a_rnd, [1 opts.N_rec*opts.N_rec_pools]);
W_rnd_rec = (norm_W_rnd_rec + dW).*(opts.Learning_WMinMax_RndRec(2) - opts.Learning_WMinMax_RndRec(1)) + opts.Learning_WMinMax_RndRec(1);
%Update weights from random network to recurrent pools
norm_W_rec_rnd = (W_rec_rnd - opts.Learning_WMinMax_RecRnd(1))./(opts.Learning_WMinMax_RecRnd(2) - opts.Learning_WMinMax_RecRnd(1));
dW = -opts.Learning_Rate*opts.Learning_FacDepBalance*((norm_W_rec_rnd.^opts.Learning_mu)*repmat(stdp_rnd(:), [1 opts.N_rnd])).*repmat(~a_rec(:), [1 opts.N_rnd]) + ...
opts.Learning_Rate*(((1 - norm_W_rec_rnd).^opts.Learning_mu)*repmat(stdp_rnd(:), [1 opts.N_rnd])).*repmat(a_rec(:), [1 opts.N_rnd]);
W_rec_rnd = (norm_W_rec_rnd + dW).*(opts.Learning_WMinMax_RecRnd(2) - opts.Learning_WMinMax_RecRnd(1)) + opts.Learning_WMinMax_RecRnd(1);
%Calcuate the current for neurons
g_rec = zeros(opts.N_rec, opts.N_rec_pools);
for cp = 1:opts.N_rec_pools,
%First, integrate my recurrent activity, the input from the random
%network, and the baseline
g_rec(:, cp) = W_rec*s_rec(:, cp) + W_rec_rnd((cp-1)*opts.N_rec + [1:opts.N_rec], :)*s_rnd + opts.b;
%Now add the other recurrent networks
for i = setdiff([1:opts.N_rec_pools], cp)
g_rec(:, cp) = g_rec(:, cp) + W_rec_rec{cp, i}*s_rec(:, i);
end
%Finally, check for inputs
if ~any(isnan(opts.InputTime(:, cp))) && (t(t_ind) >= opts.InputTime(1, cp)) && (t(t_ind) <= opts.InputTime(2, cp)),
%Inputs arrive, centered at designated location
inp_ind = [round(opts.InputCenter(cp) - 3*opts.InputWidth(cp)):round(opts.InputCenter(cp) + 3*opts.InputWidth(cp))];
inp_scale = normpdf(inp_ind - opts.InputCenter(cp), 0, opts.InputWidth(cp));
inp_scale = inp_scale./max(inp_scale);
inp_ind = mod(inp_ind - 1, opts.N_rec) + 1; %wrap around vector
%Create input vector, this is normalized so net input to
%network is kept at zero
inp_vect = zeros(opts.N_rec, 1); inp_vect(inp_ind) = opts.InputValue(cp)*inp_scale;
inp_vect = inp_vect - sum(inp_vect)./length(inp_vect); %normalize so no net input to network
g_rec(:, cp) = g_rec(:, cp) + inp_vect;
end
if ~any(isnan(opts.AttInputTime(:, cp))) && (t(t_ind) >= opts.AttInputTime(1, cp)) && (t(t_ind) <= opts.AttInputTime(2, cp)),
g_rec(:, cp) = g_rec(:, cp) + opts.AttInputValue(cp);
end
end
%Add baseline, random input
g_rec = g_rec + opts.InputBaseline*rand(size(g_rec));
%Recurrence within random network, input from recurrent networks, and
%baseline
g_rnd = W_rnd*s_rnd + W_rnd_rec*s_rec(:) + opts.b;
%Convert current to firing rate
r_rec(:, :, t_ind) = opts.RecActFxn(g_rec);
r_rnd(:, t_ind) = opts.RndActFxn(g_rnd);
%Apply divisive normalization
% time_back = round(5*(opts.DivNormTau./opts.dt)); %don't need to go too far back, zeros out pretty quick
% time_back = max(1, t_ind - time_back);
% sm_fxn = exp(-[(time_back-1):-1:0]*opts.dt./opts.DivNormTau)./sum(exp(-[(time_back-1):-1:0]*opts.dt./opts.DivNormTau));
for cp = 1:opts.N_rec_pools,
%mean_r_rec = mean(sum(r_rec(:, cp, (t_ind - time_back + 1):t_ind).*repmat(reshape(sm_fxn, [1 1 length(sm_fxn)]), [opts.N_rec 1 1]), 3), 1);
mean_r_rec = mean(r_rec(:, cp, t_ind), 1);
%r_rec(:, cp, t_ind) = r_rec(:, cp, t_ind) - (r_rec(:, cp, t_ind)*(mean_r_rec - min(mean_r_rec, opts.MaxAvgRecFR)))./mean_r_rec;
if mean_r_rec >= opts.MaxAvgRecFR,
r_rec(:, cp, t_ind) = r_rec(:, cp, t_ind)./mean_r_rec*opts.MaxAvgRecFR;
end
end
%mean_r_rec = mean(mean(sum(r_rec(:, :, (t_ind - time_back + 1):t_ind).*repmat(reshape(sm_fxn, [1 1 length(sm_fxn)]), [opts.N_rec opts.N_rec_pools 1]), 3), 2), 1);
% mean_r_rec = mean(mean(r_rec(:, :, t_ind), 2), 1);
% if mean_r_rec >= opts.MaxAvgRecFR,
% r_rec(:, :, t_ind) = r_rec(:, :, t_ind)./mean_r_rec*opts.MaxAvgRecFR;
% end
%mean_r_rnd = mean(sum(r_rnd(:, (t_ind - time_back + 1):t_ind).*repmat(sm_fxn, [opts.N_rnd, 1]), 2), 1);
mean_r_rnd = mean(r_rnd(:, t_ind), 1);
%r_rnd(:, t_ind) = r_rnd(:, t_ind) - (r_rnd(:, t_ind)*(mean_r_rnd - min(mean_r_rnd, opts.MaxAvgRndFR)))./mean_r_rnd;
if mean_r_rnd >= opts.MaxAvgRndFR,
r_rnd(:, t_ind) = r_rnd(:, t_ind)./mean_r_rnd*opts.MaxAvgRndFR;
end
%Determine whether a spike occurred
a_rec = (poissrnd(r_rec(:, :, t_ind)*opts.dt) >= 1);
a_rnd = (poissrnd(r_rnd(:, t_ind)*opts.dt) >= 1);
if opts.RunningPlot & mod(t_ind, 200) == 0,
figure(line_fig);
subplot(2,2,1); cla;
plot(ang, r_rec(:, :, t_ind)); axis tight;
set(gca, 'YLim', [0 80]);
title(sprintf('Recurrent Network - %4.3f ms', t(t_ind)*1000));
subplot(2,2,2); cla;
plot([1:opts.N_rnd], r_rnd(:, t_ind)); axis tight;
set(gca, 'YLim', [0 80]);
title(sprintf('Random Network - %4.3f ms', t(t_ind)*1000));
subplot(2,2,3); cla;
plot([1:length(ang)], g_rec); hold all;
plot(length(ang) + [1:length(s_rnd)], g_rnd);
axis tight;
title(sprintf('Recurrent Network - Synaptic Input', t(t_ind)*1000));
subplot(2,2,4); cla;
bar([1:(opts.N_rec_pools+1)], [squeeze(mean(r_rec(:, :, t_ind), 1)) mean(r_rnd(:, t_ind))]);
figure(weight_fig);
subplot(2,2,4);
imagesc(ang, [1:opts.N_rnd], W_rec_rnd');xlabel('Rec To'); ylabel('Rnd From');
title('Current Weights');
colorbar;
drawnow;
% figure(time_fig);
% for i = 1:opts.N_rec_pools,
% subplot(2,6,mod(i-1,4)+1+6*floor((i-1)/4));
% imagesc(t, [1:size(r_rec, 1)]./size(r_rec, 1)*2*pi, squeeze(r_rec(:, i, :)));
% hold all;
% v = axis;
% plot(opts.InputTime(1)*[1 1], v(3:4), 'w-'); plot(opts.InputTime(2)*[1 1], v(3:4), 'w-');
% xlabel('Time'); ylabel('Angle');
% title(sprintf('Recurrent Network %d - Activity over Time', i));
% colorbar; set(gca, 'CLim', [0 80]);
% end
%
% subplot(2,6,[5 6 11 12]);
% imagesc(t, [1:size(r_rnd, 1)], r_rnd);
% hold all;
% v = axis;
% plot(opts.InputTime(1)*[1 1], v(3:4), 'w-'); plot(opts.InputTime(2)*[1 1], v(3:4), 'w-');
% xlabel('Time'); ylabel('Neuron #');
% title('Random Network Activity over Time');
% colorbar; set(gca, 'CLim', [0 80]);
end
end %time loop
%% Downsample the firing rate to desired output
out_t = [0:opts.Output_dt:opts.SimTime];
for i = 1:size(r_rec, 1),
for j = 1:size(r_rec, 2),
temp_r_rec(i, j, :) = reshape(interp1(t, squeeze(r_rec(i, j, :)), out_t), [1 1 length(out_t)]);
end
end
r_rec = single(temp_r_rec); clear('temp_r_rec');
for i = 1:size(r_rnd, 1),
temp_r_rnd(i, :) = interp1(t, r_rnd(i, :), out_t);
end
r_rnd = single(temp_r_rnd); clear('temp_r_rnd');
t = single(out_t);
if opts.RunningPlot,
figure;
for i = 1:opts.N_rec_pools,
subplot(2,6,mod(i-1,4)+1+6*floor((i-1)/4));
imagesc(t, [1:size(r_rec, 1)]./size(r_rec, 1)*2*pi, squeeze(r_rec(:, i, :)));
hold all;
v = axis;
if ~any(isnan(opts.InputTime(:, i))),
plot(opts.InputTime(1, i)*[1 1], v(3:4), 'w-'); plot(opts.InputTime(2, i)*[1 1], v(3:4), 'w-');
end
if ~any(isnan(opts.AttInputTime(:, i))),
plot(opts.AttInputTime(1, i)*[1 1], v(3:4), 'r-'); plot(opts.AttInputTime(2, i)*[1 1], v(3:4), 'r-');
end
xlabel('Time'); ylabel('Angle');
title(sprintf('Recurrent Network %d - Activity over Time', i));
colorbar; set(gca, 'CLim', [0 80]);
end
subplot(2,6,[5 6 11 12]);
imagesc(t, [1:size(r_rnd, 1)], r_rnd);
hold all;
v = axis;
plot(opts.InputTime(1)*[1 1], v(3:4), 'w-'); plot(opts.InputTime(2)*[1 1], v(3:4), 'w-');
plot(opts.AttInputTime(1)*[1 1], v(3:4), 'r-'); plot(opts.AttInputTime(2)*[1 1], v(3:4), 'r-');
xlabel('Time'); ylabel('Neuron #');
title('Random Network Activity over Time');
colorbar; set(gca, 'CLim', [0 80]);
end