-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
175 lines (152 loc) · 5.54 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import pandas as pd
import numpy as np
import torch
from torch import nn
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from tqdm import tqdm
# create device agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
SAVE_MODEL_PATH = "models/"
SAVE_MODEL_FILENAME = "model_weights.pth"
# specify input size (images are square), batch size, number of channels, number of classes, and number of epochs
IMG_SIZE = 512
BATCH_SIZE = 32
CHANNELS = 3
EPOCHS = 5
N_CLASSES = 2
# define transformations
transform = transforms.Compose([
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# baseline model
class CNNmodel(nn.Module):
def __init__(self, input_shape: int, hidden_units: int, output_shape: int):
super().__init__()
self.block_1 = nn.Sequential(
nn.Conv2d(in_channels=input_shape,
out_channels=hidden_units,
kernel_size=3,
padding='same'),
nn.ReLU(),
nn.Conv2d(in_channels=hidden_units,
out_channels=hidden_units,
kernel_size=3,
padding='same'),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.block_2 = nn.Sequential(
nn.Conv2d(hidden_units, hidden_units, 3, padding=1),
nn.ReLU(),
nn.Conv2d(hidden_units, hidden_units, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2)
)
self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=hidden_units*128*128,
out_features=512),
nn.ReLU(),
nn.Linear(in_features=512,
out_features=output_shape),
nn.Softmax(dim=1)
)
def forward(self, x: torch.Tensor):
x = self.block_1(x)
x = self.block_2(x)
x = self.classifier(x)
return x
def train_step(model: torch.nn.Module,
data_loader: torch.utils.data.DataLoader,
loss_fn: torch.nn.Module,
optimizer: torch.optim.Optimizer,
accuracy_fn,
device: torch.device = device):
train_loss, train_acc = 0, 0
model.to(device)
model.train()
for batch, (X, y) in enumerate(data_loader):
X, y = X.to(device), y.to(device)
y_pred = model(X)
loss = loss_fn(y_pred, y)
train_loss += loss.item()
train_acc += accuracy_fn(y_true=y,
y_pred=y_pred.argmax(dim=1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss /= len(data_loader)
train_acc /= len(data_loader)
print(f"Train loss: {train_loss:.5f} | Train accuracy: {train_acc:.2f}%")
return train_loss, train_acc
def test_step(data_loader: torch.utils.data.DataLoader,
model: torch.nn.Module,
loss_fn: torch.nn.Module,
accuracy_fn,
device: torch.device = device):
test_loss, test_acc = 0, 0
model.to(device)
model.eval()
with torch.inference_mode():
for X, y in data_loader:
X, y = X.to(device), y.to(device)
test_pred = model(X)
test_loss += loss_fn(test_pred, y).item()
test_acc += accuracy_fn(y_true=y,
y_pred=test_pred.argmax(dim=1)
)
test_loss /= len(data_loader)
test_acc /= len(data_loader)
print(f"Test loss: {test_loss:.5f} | Test accuracy: {test_acc:.2f}%\n")
return test_loss, test_acc
# Calculate accuracy
def accuracy_fn(y_true, y_pred):
correct = torch.eq(y_true, y_pred).sum().item()
acc = (correct / len(y_pred)) * 100
return acc
def main():
# specify the paths to the directory where the data is stored
trainpath = 'dataset/train/'
testpath = 'dataset/test/'
valpath = 'dataset/validation/'
# training, validation, test data
train_dataset = datasets.ImageFolder(trainpath, transform=transform)
val_dataset = datasets.ImageFolder(valpath, transform=transform)
test_dataset = datasets.ImageFolder(testpath, transform=transform)
# data loaders
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True)
model = CNNmodel(input_shape=CHANNELS,
hidden_units=64,
output_shape=N_CLASSES).to(device)
# Setup loss and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters(),
lr=0.004)
for epoch in tqdm(range(EPOCHS)):
train_loss, train_accuracy = train_step(data_loader=train_loader,
model=model,
loss_fn=loss_fn,
optimizer=optimizer,
accuracy_fn=accuracy_fn,
device=device
)
val_loss, val_accuracy = test_step(data_loader=val_loader,
model=model,
loss_fn=loss_fn,
accuracy_fn=accuracy_fn,
device=device
)
print(f"Epoch: {epoch + 1}\n------------")
# Save the model
torch.save(model.state_dict(), os.path.join(SAVE_MODEL_PATH, SAVE_MODEL_FILENAME))
if __name__ == "__main__":
main()