-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
75 lines (58 loc) · 2.61 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision.models import resnet50
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import joblib
import numpy as np
from tqdm import tqdm
import os
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
train_dataset = ImageFolder(root='dataset/train', transform=transform)
val_dataset = ImageFolder(root='dataset/validation', transform=transform)
test_dataset = ImageFolder(root='dataset/test', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
print("Class mapping:", train_dataset.class_to_idx)
resnet_model = resnet50(pretrained=True)
resnet_model = torch.nn.Sequential(*list(resnet_model.children())[:-1])
resnet_model = resnet_model.to('cuda')
resnet_model.eval()
def extract_features(data_loader, model):
features = []
labels = []
with torch.no_grad():
for images, label in tqdm(data_loader):
images = images.to('cuda')
output = model(images)
output = output.view(output.size(0), -1) # Flatten
features.append(output.cpu().numpy())
labels.append(label.numpy())
features = np.vstack(features)
labels = np.hstack(labels)
return features, labels
train_features, train_labels = extract_features(train_loader, resnet_model)
val_features, val_labels = extract_features(val_loader, resnet_model)
test_features, test_labels = extract_features(test_loader, resnet_model)
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
rf_model.fit(train_features, train_labels)
val_predictions = rf_model.predict(val_features)
val_accuracy = accuracy_score(val_labels, val_predictions)
print(f"Validation Accuracy: {val_accuracy:.2f}")
print("Validation Classification Report:")
print(classification_report(val_labels, val_predictions))
test_predictions = rf_model.predict(test_features)
test_accuracy = accuracy_score(test_labels, test_predictions)
print(f"Test Accuracy: {test_accuracy:.2f}")
print("Test Classification Report:")
print(classification_report(test_labels, test_predictions))
rf_model_path = "random_forest_colon_cancer_resnet.pth"
joblib.dump(rf_model, rf_model_path)
print(f"Random Forest model saved to {rf_model_path}")