|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "54d7c5a7-d698-4bee-8fde-a5c62e4b5ded", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# GTFS Schedule and RT compliant operators\n", |
| 9 | + "\n", |
| 10 | + "High-level metric to see how many ITP IDs we track year to year with GTFS schedule and RT data\n", |
| 11 | + "\n", |
| 12 | + "* [Slack request](https://cal-itp.slack.com/archives/C014Q6G3VCJ/p1657141675073339)\n", |
| 13 | + "* GTFS Schedule fact daily feeds: https://dbt-docs.calitp.org/#!/model/model.calitp_warehouse.gtfs_schedule_fact_daily\n", |
| 14 | + " * this is pre-aggregated, let's just grab distinct ITP IDs from here\n", |
| 15 | + "* GTFS RT fact files: https://dbt-docs.calitp.org/#!/model/model.calitp_warehouse.gtfs_rt_fact_daily_feeds\n", |
| 16 | + " * model this after how GTFS schedule does it" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 1, |
| 22 | + "id": "60c34ea5-0e77-4f63-8c2a-a0ef1b30f418", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [ |
| 25 | + { |
| 26 | + "name": "stderr", |
| 27 | + "output_type": "stream", |
| 28 | + "text": [ |
| 29 | + "/opt/conda/lib/python3.10/site-packages/geopandas/_compat.py:111: UserWarning: The Shapely GEOS version (3.10.2-CAPI-1.16.0) is incompatible with the GEOS version PyGEOS was compiled with (3.10.1-CAPI-1.16.0). Conversions between both will be slow.\n", |
| 30 | + " warnings.warn(\n" |
| 31 | + ] |
| 32 | + } |
| 33 | + ], |
| 34 | + "source": [ |
| 35 | + "import os\n", |
| 36 | + "import pandas as pd\n", |
| 37 | + "\n", |
| 38 | + "from calitp.tables import tbl\n", |
| 39 | + "from siuba import *" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": 2, |
| 45 | + "id": "70c563bd-5993-441d-b74b-b63754a4eace", |
| 46 | + "metadata": {}, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "gtfs_sched_operators = (\n", |
| 50 | + " tbl.views.gtfs_schedule_fact_daily()\n", |
| 51 | + " >> select(_.date, _.n_distinct_itp_ids)\n", |
| 52 | + " >> collect()\n", |
| 53 | + ")\n", |
| 54 | + "\n", |
| 55 | + "gtfs_rt_operators = (\n", |
| 56 | + " tbl.views.gtfs_rt_fact_daily_feeds()\n", |
| 57 | + " >> select(_.calitp_itp_id, _.date)\n", |
| 58 | + " >> distinct()\n", |
| 59 | + " >> group_by(_.date)\n", |
| 60 | + " >> summarize(n_distinct_itp_ids = _.calitp_itp_id.nunique())\n", |
| 61 | + " >> collect() \n", |
| 62 | + ")" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": 3, |
| 68 | + "id": "89bc4015-881b-4c7d-8c4e-b5d1dc64a6fb", |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "def parse_date(df):\n", |
| 73 | + " df = df.assign(\n", |
| 74 | + " date = pd.to_datetime(df.date)\n", |
| 75 | + " ).sort_values(\"date\").reset_index(drop=True)\n", |
| 76 | + " \n", |
| 77 | + " return df\n", |
| 78 | + "\n", |
| 79 | + "def select_start_end(df, start, end):\n", |
| 80 | + " df2 = parse_date(df)\n", |
| 81 | + " \n", |
| 82 | + " df3 = df2[(df2.date==start) | \n", |
| 83 | + " (df2.date==end)].reset_index(drop=True)\n", |
| 84 | + " \n", |
| 85 | + " return df3" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "markdown", |
| 90 | + "id": "945e61c8-2181-44ff-9905-8b43756be43a", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "## GTFS Schedule - unique ITP IDs year to year" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": 4, |
| 99 | + "id": "8833bace-1229-4aec-8cb3-69a13cd4e650", |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [ |
| 102 | + { |
| 103 | + "data": { |
| 104 | + "text/html": [ |
| 105 | + "<div>\n", |
| 106 | + "<style scoped>\n", |
| 107 | + " .dataframe tbody tr th:only-of-type {\n", |
| 108 | + " vertical-align: middle;\n", |
| 109 | + " }\n", |
| 110 | + "\n", |
| 111 | + " .dataframe tbody tr th {\n", |
| 112 | + " vertical-align: top;\n", |
| 113 | + " }\n", |
| 114 | + "\n", |
| 115 | + " .dataframe thead th {\n", |
| 116 | + " text-align: right;\n", |
| 117 | + " }\n", |
| 118 | + "</style>\n", |
| 119 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 120 | + " <thead>\n", |
| 121 | + " <tr style=\"text-align: right;\">\n", |
| 122 | + " <th></th>\n", |
| 123 | + " <th>date</th>\n", |
| 124 | + " <th>n_distinct_itp_ids</th>\n", |
| 125 | + " </tr>\n", |
| 126 | + " </thead>\n", |
| 127 | + " <tbody>\n", |
| 128 | + " <tr>\n", |
| 129 | + " <th>0</th>\n", |
| 130 | + " <td>2021-07-01</td>\n", |
| 131 | + " <td>181</td>\n", |
| 132 | + " </tr>\n", |
| 133 | + " <tr>\n", |
| 134 | + " <th>1</th>\n", |
| 135 | + " <td>2022-06-30</td>\n", |
| 136 | + " <td>195</td>\n", |
| 137 | + " </tr>\n", |
| 138 | + " </tbody>\n", |
| 139 | + "</table>\n", |
| 140 | + "</div>" |
| 141 | + ], |
| 142 | + "text/plain": [ |
| 143 | + " date n_distinct_itp_ids\n", |
| 144 | + "0 2021-07-01 181\n", |
| 145 | + "1 2022-06-30 195" |
| 146 | + ] |
| 147 | + }, |
| 148 | + "execution_count": 4, |
| 149 | + "metadata": {}, |
| 150 | + "output_type": "execute_result" |
| 151 | + } |
| 152 | + ], |
| 153 | + "source": [ |
| 154 | + "start_date = \"2021-07-01\"\n", |
| 155 | + "end_date = \"2022-06-30\"\n", |
| 156 | + "\n", |
| 157 | + "gtfs_sched = select_start_end(gtfs_sched_operators, start_date, end_date)\n", |
| 158 | + "gtfs_sched" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "markdown", |
| 163 | + "id": "d1769281-5dd9-4ce8-b772-a8a5f47e5527", |
| 164 | + "metadata": {}, |
| 165 | + "source": [ |
| 166 | + "## GTFS RT - unique ITP IDs year to year\n", |
| 167 | + "\n", |
| 168 | + "* Earliest RT is 7/7/21 (pretty close to 7/1/21!)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": 5, |
| 174 | + "id": "912ad337-fbe1-4b44-99ab-09aa7acf946e", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [ |
| 177 | + { |
| 178 | + "data": { |
| 179 | + "text/html": [ |
| 180 | + "<div>\n", |
| 181 | + "<style scoped>\n", |
| 182 | + " .dataframe tbody tr th:only-of-type {\n", |
| 183 | + " vertical-align: middle;\n", |
| 184 | + " }\n", |
| 185 | + "\n", |
| 186 | + " .dataframe tbody tr th {\n", |
| 187 | + " vertical-align: top;\n", |
| 188 | + " }\n", |
| 189 | + "\n", |
| 190 | + " .dataframe thead th {\n", |
| 191 | + " text-align: right;\n", |
| 192 | + " }\n", |
| 193 | + "</style>\n", |
| 194 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 195 | + " <thead>\n", |
| 196 | + " <tr style=\"text-align: right;\">\n", |
| 197 | + " <th></th>\n", |
| 198 | + " <th>date</th>\n", |
| 199 | + " <th>n_distinct_itp_ids</th>\n", |
| 200 | + " </tr>\n", |
| 201 | + " </thead>\n", |
| 202 | + " <tbody>\n", |
| 203 | + " <tr>\n", |
| 204 | + " <th>0</th>\n", |
| 205 | + " <td>2021-07-07</td>\n", |
| 206 | + " <td>29</td>\n", |
| 207 | + " </tr>\n", |
| 208 | + " <tr>\n", |
| 209 | + " <th>1</th>\n", |
| 210 | + " <td>2022-06-30</td>\n", |
| 211 | + " <td>79</td>\n", |
| 212 | + " </tr>\n", |
| 213 | + " </tbody>\n", |
| 214 | + "</table>\n", |
| 215 | + "</div>" |
| 216 | + ], |
| 217 | + "text/plain": [ |
| 218 | + " date n_distinct_itp_ids\n", |
| 219 | + "0 2021-07-07 29\n", |
| 220 | + "1 2022-06-30 79" |
| 221 | + ] |
| 222 | + }, |
| 223 | + "execution_count": 5, |
| 224 | + "metadata": {}, |
| 225 | + "output_type": "execute_result" |
| 226 | + } |
| 227 | + ], |
| 228 | + "source": [ |
| 229 | + "earliest_rt = pd.to_datetime(gtfs_rt_operators.date.min())\n", |
| 230 | + "\n", |
| 231 | + "gtfs_rt = select_start_end(gtfs_rt_operators, earliest_rt, end_date)\n", |
| 232 | + "gtfs_rt" |
| 233 | + ] |
| 234 | + }, |
| 235 | + { |
| 236 | + "cell_type": "code", |
| 237 | + "execution_count": null, |
| 238 | + "id": "3977ef63-fe57-4d24-a05c-c792c5e6d065", |
| 239 | + "metadata": {}, |
| 240 | + "outputs": [], |
| 241 | + "source": [] |
| 242 | + } |
| 243 | + ], |
| 244 | + "metadata": { |
| 245 | + "kernelspec": { |
| 246 | + "display_name": "Python 3 (ipykernel)", |
| 247 | + "language": "python", |
| 248 | + "name": "python3" |
| 249 | + }, |
| 250 | + "language_info": { |
| 251 | + "codemirror_mode": { |
| 252 | + "name": "ipython", |
| 253 | + "version": 3 |
| 254 | + }, |
| 255 | + "file_extension": ".py", |
| 256 | + "mimetype": "text/x-python", |
| 257 | + "name": "python", |
| 258 | + "nbconvert_exporter": "python", |
| 259 | + "pygments_lexer": "ipython3", |
| 260 | + "version": "3.10.4" |
| 261 | + } |
| 262 | + }, |
| 263 | + "nbformat": 4, |
| 264 | + "nbformat_minor": 5 |
| 265 | +} |
0 commit comments