|
288 | 288 | {
|
289 | 289 | "cell_type": "code",
|
290 | 290 | "execution_count": null,
|
291 |
| - "id": "4aa9c044-945e-4c17-ab5b-8cf3ca0393ec", |
| 291 | + "id": "a6cf9006-2654-4b6d-8726-82f3e41ffe20", |
292 | 292 | "metadata": {},
|
293 | 293 | "outputs": [],
|
294 | 294 | "source": [
|
295 |
| - "# Function for comparing total funding amount versus total estimated expense\n", |
296 |
| - "def funding_vs_expenses(df):\n", |
297 |
| - " if df[\"total_project_request_99314_+_99313\"] == df[\"total_project_cost\"]:\n", |
| 295 | + "def funding_vs_expenses(row):\n", |
| 296 | + " if row[\"total_project_request_99314_+_99313\"] == row[\"total_project_cost\"]:\n", |
298 | 297 | " return \"Fully funded\"\n",
|
299 |
| - " if df[\"total_project_cost\"] == 0:\n", |
| 298 | + " if row[\"total_project_cost\"] == 0:\n", |
300 | 299 | " return \"No project cost info, just 0\"\n",
|
301 |
| - " elif df[\"total_project_request_99314_+_99313\"] > df[\"total_project_cost\"]:\n", |
| 300 | + " elif row[\"total_project_request_99314_+_99313\"] > row[\"total_project_cost\"]:\n", |
302 | 301 | " return \"Funding exceeds total expenses\"\n",
|
303 |
| - " elif df[\"total_project_request_99314_+_99313\"] < df[\"total_project_cost\"]:\n", |
| 302 | + " elif row[\"total_project_request_99314_+_99313\"] < row[\"total_project_cost\"]:\n", |
304 | 303 | " return \"Not fully funded\"\n",
|
305 | 304 | " else:\n",
|
306 | 305 | " return \"Not fully funded\""
|
307 | 306 | ]
|
308 | 307 | },
|
| 308 | + { |
| 309 | + "cell_type": "code", |
| 310 | + "execution_count": null, |
| 311 | + "id": "4d5c6f83-8acd-4976-ad05-5f288aeb81db", |
| 312 | + "metadata": {}, |
| 313 | + "outputs": [], |
| 314 | + "source": [ |
| 315 | + "df_lctop3['fully_funded'] = df_lctop3.apply(lambda x: funding_vs_expenses(x), axis=1)" |
| 316 | + ] |
| 317 | + }, |
| 318 | + { |
| 319 | + "cell_type": "code", |
| 320 | + "execution_count": null, |
| 321 | + "id": "383bfa38-758f-441f-9ed7-9760a3127a0d", |
| 322 | + "metadata": {}, |
| 323 | + "outputs": [], |
| 324 | + "source": [ |
| 325 | + "# Apply function to determine if a project is fully funded or not\n", |
| 326 | + "df_lctop3['fully_funded'] = df_lctop3.apply(funding_vs_expenses, axis=1)" |
| 327 | + ] |
| 328 | + }, |
309 | 329 | {
|
310 | 330 | "cell_type": "code",
|
311 | 331 | "execution_count": null,
|
|
501 | 521 | },
|
502 | 522 | "outputs": [],
|
503 | 523 | "source": [
|
504 |
| - "# df_tircp_zev" |
| 524 | + "# df_tircp_zev.head(5)" |
505 | 525 | ]
|
506 | 526 | },
|
507 | 527 | {
|
|
553 | 573 | "\n",
|
554 | 574 | "# Open the workbook in a dictionary\n",
|
555 | 575 | "dict_df1 = pd.read_excel(\n",
|
556 |
| - " \"gs://calitp-analytics-data/data-analyses/tircp/LCTOP_TIRCP_manual_ZEV_count.xlsx\",\n", |
| 576 | + " \"gs://calitp-analytics-data/data-analyses/tircp/LCTOP_TIRCP_ZEV_manual.xlsx\",\n", |
557 | 577 | " sheet_name=sheets_list,\n",
|
558 | 578 | ")"
|
559 | 579 | ]
|
|
570 | 590 | "tircp_clean = to_snakecase(dict_df1.get(\"tircp\"))"
|
571 | 591 | ]
|
572 | 592 | },
|
| 593 | + { |
| 594 | + "cell_type": "code", |
| 595 | + "execution_count": null, |
| 596 | + "id": "3a75d4eb-4eb2-475f-af81-99138a599e30", |
| 597 | + "metadata": {}, |
| 598 | + "outputs": [], |
| 599 | + "source": [ |
| 600 | + "tircp_clean.head(2)" |
| 601 | + ] |
| 602 | + }, |
573 | 603 | {
|
574 | 604 | "cell_type": "markdown",
|
575 | 605 | "id": "c6ba5966-b1e0-4b07-8718-d573764de145",
|
|
0 commit comments