|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "d5abe861-679e-48b6-8b9c-8175a4e211e0", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import pandas as pd\n", |
| 11 | + "import plotly.express as px\n", |
| 12 | + "import seaborn as sns\n", |
| 13 | + "from calitp import query_sql" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "id": "8597be54-d1b6-476b-a8d9-817d6b42bbf0", |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [], |
| 22 | + "source": [ |
| 23 | + "df = query_sql(\"SELECT * FROM views.payments_rides LIMIT 1000000\", as_df=True)\n", |
| 24 | + "df" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": null, |
| 30 | + "id": "3df1926d-8288-455e-a4e6-60668fa0ec68", |
| 31 | + "metadata": {}, |
| 32 | + "outputs": [], |
| 33 | + "source": [ |
| 34 | + "df.columns" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "id": "4595bea8-caed-47a9-9d75-6fba1408a56f", |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "data = df[\"participant_id\"].value_counts(normalize=True)\n", |
| 45 | + "sns.barplot(x=data.index, y=data.values)" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "id": "1e869e02-44c1-4cfc-ab5c-e2b94f447f8c", |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "df[\"micropayment_id\"].value_counts()" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": null, |
| 61 | + "id": "f60366b6-dbc2-460a-a4d6-04b83fdeef32", |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "data = df[\"card_scheme\"].value_counts(normalize=True)\n", |
| 66 | + "sns.barplot(x=data.index, y=data.values)" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "id": "5da57538-e570-4332-b00b-ab232d7a0633", |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "data = df[\"issuer\"].value_counts(normalize=True).head()\n", |
| 77 | + "ax = sns.barplot(x=data.index, y=data.values)\n", |
| 78 | + "ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)\n", |
| 79 | + "ax" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "id": "d27daf9f-8415-429e-ac1a-76316c4be217", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "#Add counts\n", |
| 90 | + "data = df['issuer_country'].value_counts().head()\n", |
| 91 | + "sns.barplot(x=data.index, y=data.values)" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "id": "f56c075e-e782-4785-9e6a-d28ae4477791", |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "data" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "id": "57277378-2309-4c1a-8709-8fbbfe9d32d1", |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [ |
| 111 | + "df['transaction_month'] = pd.to_datetime(df['transaction_date_time_utc']).dt.month\n", |
| 112 | + "top_10_non_US = df['issuer_country'].value_counts(normalize=True)[1:11]\n", |
| 113 | + "country_counts_df = df.groupby(['issuer_country', 'transaction_month']).count().reset_index()\n", |
| 114 | + "top_10_country_counts_df = country_counts_df[country_counts_df['issuer_country'].isin(top_10_non_US.index)]\n", |
| 115 | + "top_10_country_counts_df" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "id": "b5c9b03b-f89c-4e8d-8a08-ca664946f3bd", |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [], |
| 124 | + "source": [ |
| 125 | + "sns.lineplot(x='transaction_month', y='participant_id', hue='issuer_country', data=top_10_country_counts_df)" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "id": "ef0601f0-5b78-4646-b117-c4b5d5a83649", |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "data = df[\"form_factor\"].value_counts(normalize=True)\n", |
| 136 | + "sns.barplot(x=data.index, y=data.values)" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": null, |
| 142 | + "id": "325c4b51-5df4-473c-bfd7-2f84845dbadb", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "data = df[\"charge_amount\"]\n", |
| 147 | + "sns.displot(x=data.values)" |
| 148 | + ] |
| 149 | + }, |
| 150 | + { |
| 151 | + "cell_type": "code", |
| 152 | + "execution_count": null, |
| 153 | + "id": "3ef9d046-6ba5-406c-be18-373c159c827d", |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [], |
| 156 | + "source": [ |
| 157 | + "df[\"charge_amount\"].describe()" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": null, |
| 163 | + "id": "58978e83-7813-488a-b997-ac22b195ac55", |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [], |
| 166 | + "source": [ |
| 167 | + "data = df[\"charge_type\"].value_counts(normalize=True)\n", |
| 168 | + "sns.barplot(x=data.index, y=data.values)" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "ebac22d8-99f8-4922-b0e6-5f1e70cdd885", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "data = df[\"adjustment_type\"].value_counts(normalize=True)\n", |
| 179 | + "ax = sns.barplot(x=data.index, y=data.values)\n", |
| 180 | + "ax.set_xticklabels(ax.get_xticklabels(),rotation = 60)\n", |
| 181 | + "ax" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": null, |
| 187 | + "id": "8daa0f6a-d238-4c82-ad50-c423d2f07702", |
| 188 | + "metadata": {}, |
| 189 | + "outputs": [], |
| 190 | + "source": [ |
| 191 | + "df[\"adjustment_description\"].value_counts(normalize=True)" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": null, |
| 197 | + "id": "c1d7965a-299c-4327-a07b-b99b885a8468", |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [], |
| 200 | + "source": [ |
| 201 | + "# Simulations for revenue/ridership if this was distributed differently?" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "code", |
| 206 | + "execution_count": null, |
| 207 | + "id": "a6038fde-9ebc-4705-9b5a-f3aca75eb5b9", |
| 208 | + "metadata": { |
| 209 | + "tags": [] |
| 210 | + }, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "sns.displot(pd.to_datetime(df[\"transaction_date_time_utc\"]).dt.hour)" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": null, |
| 219 | + "id": "dd41da3c-da64-4506-a241-2f3469d18a32", |
| 220 | + "metadata": { |
| 221 | + "tags": [] |
| 222 | + }, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "df[\"route_short_name\"].value_counts(normalize=True)" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": null, |
| 231 | + "id": "88701603-1dd2-4dd9-8a83-890483b53486", |
| 232 | + "metadata": {}, |
| 233 | + "outputs": [], |
| 234 | + "source": [ |
| 235 | + "df.corr()" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "code", |
| 240 | + "execution_count": null, |
| 241 | + "id": "2d8ccc87-255d-48c8-ac42-308907b7cde7", |
| 242 | + "metadata": {}, |
| 243 | + "outputs": [], |
| 244 | + "source": [ |
| 245 | + "corr_cols = df.columns.drop(['participant_id', 'micropayment_id', 'funding_source_vault_id', 'customer_id', 'principal_customer_id', \n", |
| 246 | + " 'bin', 'masked_pan', 'vehicle_id', 'adjustment_id', 'littlepay_transaction_id', 'off_littlepay_transaction_id', \n", |
| 247 | + " 'device_id', 'charge_amount', 'transaction_date_time_utc', 'transaction_date_time_pacific', \n", |
| 248 | + " 'off_transaction_date_time_utc', 'off_transaction_date_time_pacific', 'refund_amount', 'location_id',\n", |
| 249 | + " 'nominal_amount', 'adjustment_amount', 'latitude', 'longitude', 'off_latitude', 'off_longitude'])\n", |
| 250 | + "one_hot_df = pd.get_dummies(df, columns=corr_cols)\n", |
| 251 | + "one_hot_df" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "cell_type": "code", |
| 256 | + "execution_count": null, |
| 257 | + "id": "d20c1eb2-336a-42a3-a7a8-d959e42ea663", |
| 258 | + "metadata": {}, |
| 259 | + "outputs": [], |
| 260 | + "source": [ |
| 261 | + "#corr_df = one_hot_df.corr()" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": null, |
| 267 | + "id": "4f6a0f49-baa9-4156-9c78-caf5dfba04b6", |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [], |
| 270 | + "source": [ |
| 271 | + "corr_df = corr_df.dropna(how='all')\n", |
| 272 | + "corr_df.nlargest(n=10, columns=corr_df.columns)" |
| 273 | + ] |
| 274 | + }, |
| 275 | + { |
| 276 | + "cell_type": "code", |
| 277 | + "execution_count": null, |
| 278 | + "id": "896df0ec-462d-4ad6-814d-2c487ea2f26e", |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [], |
| 281 | + "source": [ |
| 282 | + "# correlate across other values" |
| 283 | + ] |
| 284 | + }, |
| 285 | + { |
| 286 | + "cell_type": "code", |
| 287 | + "execution_count": null, |
| 288 | + "id": "3c7f9aa1-a6c1-4ad4-bb4e-f792b2417755", |
| 289 | + "metadata": {}, |
| 290 | + "outputs": [], |
| 291 | + "source": [ |
| 292 | + "df[\"direction\"].value_counts(normalize=True)" |
| 293 | + ] |
| 294 | + }, |
| 295 | + { |
| 296 | + "cell_type": "code", |
| 297 | + "execution_count": null, |
| 298 | + "id": "addf55da-706f-40a1-aa05-7819f50e5179", |
| 299 | + "metadata": {}, |
| 300 | + "outputs": [], |
| 301 | + "source": [ |
| 302 | + "df[\"adjustment_type\"].value_counts()" |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "code", |
| 307 | + "execution_count": null, |
| 308 | + "id": "691d4113-a3f9-4b8d-a802-68fcc4231b14", |
| 309 | + "metadata": { |
| 310 | + "tags": [] |
| 311 | + }, |
| 312 | + "outputs": [], |
| 313 | + "source": [ |
| 314 | + "fig = px.scatter_geo(df, lat=\"latitude\", lon=\"longitude\", hover_name=\"route_short_name\")\n", |
| 315 | + "fig.show()" |
| 316 | + ] |
| 317 | + } |
| 318 | + ], |
| 319 | + "metadata": { |
| 320 | + "kernelspec": { |
| 321 | + "display_name": "Python 3 (ipykernel)", |
| 322 | + "language": "python", |
| 323 | + "name": "python3" |
| 324 | + }, |
| 325 | + "language_info": { |
| 326 | + "codemirror_mode": { |
| 327 | + "name": "ipython", |
| 328 | + "version": 3 |
| 329 | + }, |
| 330 | + "file_extension": ".py", |
| 331 | + "mimetype": "text/x-python", |
| 332 | + "name": "python", |
| 333 | + "nbconvert_exporter": "python", |
| 334 | + "pygments_lexer": "ipython3", |
| 335 | + "version": "3.9.13" |
| 336 | + } |
| 337 | + }, |
| 338 | + "nbformat": 4, |
| 339 | + "nbformat_minor": 5 |
| 340 | +} |
0 commit comments