@@ -258,9 +258,11 @@ def condense_df(df):
258
258
# make sure columns are in string format
259
259
df [['county_code' , 'improvement_type' ,
260
260
'implementing_agency_locode' , 'district' ,
261
- 'program_code_description' , 'recipient_project_number' ]] = df [['county_code' , 'improvement_type' ,
261
+ 'program_code_description' , 'recipient_project_number' ,
262
+ "funding_type_code" ]] = df [['county_code' , 'improvement_type' ,
262
263
'implementing_agency_locode' , 'district' ,
263
- 'program_code_description' , 'recipient_project_number' ]].astype (str )
264
+ 'program_code_description' , 'recipient_project_number' ,
265
+ "funding_type_code" ]].astype (str )
264
266
# copy county column over to use for project title name easier
265
267
df ['county_name_title' ] = df ['county_name' ]
266
268
# copy program code column over to use for project description column easier
@@ -272,7 +274,7 @@ def condense_df(df):
272
274
.groupby (['fmis_transaction_date' ,'project_number' , 'implementing_agency' , 'summary_recipient_defined_text_field_1_value'
273
275
# , 'program_code', 'program_code_description'
274
276
])
275
- .agg ({
277
+ .agg ({'funding_type_code' : lambda x : '|' . join ( x . unique ()),
276
278
'program_code' :lambda x :'|' .join (x .unique ()), # get unique values to concatenate ##hashing this out to group by instead
277
279
'program_code_description' :lambda x :'|' .join (x .unique ()), # get unique values to concatenate ##hashing this out to group by instead
278
280
'recipient_project_number' :lambda x :'|' .join (x .unique ()), #'first',
0 commit comments