Skip to content

Commit c18b87a

Browse files
committed
added funding type code
1 parent 4183c25 commit c18b87a

File tree

4 files changed

+639
-3797
lines changed

4 files changed

+639
-3797
lines changed

dla/iija/_data_utils.py

Lines changed: 15 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -195,14 +195,24 @@ def add_new_codes(df):
195195

196196
## adding updated program codes 1/30/25
197197
new_codes = update_program_code_list_2025()
198-
code_map = dict(new_codes[['iija_program_code', 'program_name']].values)
199-
200-
df['program_code_description'] = df.program_code.map(code_map)
198+
iija_code_map = dict(new_codes[['iija_program_code', 'program_name']].values)
199+
df['program_code_description'] = df.program_code.map(iija_code_map)
200+
201+
# Add funding_type_code
202+
funding_type_code_df = new_codes[[
203+
'iija_program_code',
204+
'funding_type_code']].drop_duplicates()
205+
206+
df = pd.merge(df, funding_type_code_df,
207+
left_on = "program_code",
208+
right_on = "iija_program_code",
209+
how = "left")
210+
# Turn summary_recipient_defined_text_field_1_value to a string
201211
df['summary_recipient_defined_text_field_1_value'] = df['summary_recipient_defined_text_field_1_value'].astype(str)
202212

203213
# Amanda: January 2025, notified this should be called emergency supplement funding
204-
#df.loc[df.program_code =='ER01', 'program_code_description'] = 'Emergency Relieve Funding'
205-
#df.loc[df.program_code =='ER03', 'program_code_description'] = 'Emergency Relieve Funding'
214+
df.loc[df.program_code =='ER01', 'program_code_description'] = 'Emergency Supplement Funding'
215+
df.loc[df.program_code =='ER03', 'program_code_description'] = 'Emergency Supplement Funding'
206216

207217
return df
208218

dla/iija/_script_utils.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -258,9 +258,11 @@ def condense_df(df):
258258
# make sure columns are in string format
259259
df[['county_code', 'improvement_type',
260260
'implementing_agency_locode', 'district',
261-
'program_code_description', 'recipient_project_number']] = df[['county_code', 'improvement_type',
261+
'program_code_description', 'recipient_project_number',
262+
"funding_type_code"]] = df[['county_code', 'improvement_type',
262263
'implementing_agency_locode', 'district',
263-
'program_code_description', 'recipient_project_number']].astype(str)
264+
'program_code_description', 'recipient_project_number',
265+
"funding_type_code"]].astype(str)
264266
# copy county column over to use for project title name easier
265267
df['county_name_title'] = df['county_name']
266268
# copy program code column over to use for project description column easier
@@ -272,7 +274,7 @@ def condense_df(df):
272274
.groupby(['fmis_transaction_date','project_number', 'implementing_agency', 'summary_recipient_defined_text_field_1_value'
273275
# , 'program_code', 'program_code_description'
274276
])
275-
.agg({
277+
.agg({'funding_type_code':lambda x:'|'.join(x.unique()),
276278
'program_code':lambda x:'|'.join(x.unique()), # get unique values to concatenate ##hashing this out to group by instead
277279
'program_code_description':lambda x:'|'.join(x.unique()), # get unique values to concatenate ##hashing this out to group by instead
278280
'recipient_project_number':lambda x:'|'.join(x.unique()), #'first',

0 commit comments

Comments
 (0)