|
5 | 5 | import os
|
6 | 6 | os.environ["CALITP_BQ_MAX_BYTES"] = str(800_000_000_000) ## 800GB?
|
7 | 7 |
|
8 |
| -from calitp_data_analysis.tables import tbls |
9 |
| -from calitp_data_analysis.sql import query_sql |
10 |
| -import calitp_data_analysis.magics |
| 8 | +import altair as alt |
11 | 9 | import branca
|
12 | 10 |
|
13 |
| -from siuba import * |
14 |
| -import pandas as pd |
15 |
| - |
16 |
| -import datetime as dt |
17 |
| -# import time |
18 |
| -# from zoneinfo import ZoneInfo |
19 |
| - |
20 |
| -# import importlib |
21 |
| - |
22 | 11 | import gcsfs
|
23 |
| -fs = gcsfs.GCSFileSystem() |
| 12 | +import pandas as pd |
24 | 13 |
|
25 |
| -# from tqdm import tqdm_notebook |
26 |
| -# from tqdm.notebook import trange, tqdm |
| 14 | +from siuba import * |
| 15 | +from calitp_data_analysis.tables import tbls |
| 16 | +from calitp_data_analysis.sql import query_sql |
| 17 | +import calitp_data_analysis.magics |
27 | 18 |
|
28 |
| -import altair as alt |
29 |
| -from shared_utils import portfolio_utils, geography_utils, styleguide |
30 |
| -from shared_utils import calitp_color_palette as cp |
| 19 | +from shared_utils import portfolio_utils |
| 20 | +from calitp_data_analysis import geography_utils, styleguide |
| 21 | +from calitp_data_analysis import calitp_color_palette as cp |
31 | 22 | from dla_utils import _dla_utils as dla_utils
|
32 | 23 |
|
| 24 | +fs = gcsfs.GCSFileSystem() |
33 | 25 |
|
34 | 26 | # Read in complete data table
|
35 | 27 | def read_data():
|
@@ -189,7 +181,7 @@ def get_agg_pct(df,
|
189 | 181 | sum_vp: list,
|
190 | 182 | ):
|
191 | 183 |
|
192 |
| - agg_df = (geography_utils.aggregate_by_geography(df, |
| 184 | + agg_df = (portfolio_utils.aggregate_by_geography(df, |
193 | 185 | group_cols = groupings,
|
194 | 186 | sum_cols = [sum_sched, sum_vp]
|
195 | 187 | ))>>mutate(avg = _[sum_vp]/_[sum_sched])
|
|
0 commit comments