-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpandas_box_exhumation.py
393 lines (295 loc) · 17.2 KB
/
pandas_box_exhumation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#pandas direct boxer
import matplotlib
matplotlib.use("Agg")
import pandas as pd
import csv
import os
from matplotlib import pyplot as plt
###windows switch###
#windows = False
windows = False
sub_path = 'full_himalaya/'
if windows:
sub_path = '25_65\\'
target = os.path.join('R:\\','LSDTopoTools','Topographic_projects',sub_path,'\\')
#temp_path = os.path.join('C:\\','pandas_in',sub_path)
#temp_out = os.path.join('C:\\','pandas_out',sub_path)
else:
target = '/exports/csce/datastore/geos/users/s1134744/LSDTopoTools/Topographic_projects/'+sub_path
#recast calculation
def multiply(x):
return x*100
#function to temporarily recast quaternary data to integer values whilst retaining 2 decimal place
def recastingColumn(dataFrame):
dataFrame["quaternary_burned_data"] = dataFrame["quaternary_burned_data"].apply(multiply)
dataFrame["quaternary_burned_data"] = dataFrame["quaternary_burned_data"].astype(int)
dataFrame["tertiary_burned_data"] = dataFrame["tertiary_burned_data"].apply(multiply)
dataFrame["tertiary_burned_data"] = dataFrame["tertiary_burned_data"].astype(int)
return dataFrame
def counter(pandasDF):
list_a = pandasDF["m_chi"]
list_a = list_a.tolist()
count = len(list_a)
return count
def renameToSeries(dataFrame,column_name):
column = "m_chi"
dataFrame.rename(columns={column:column_name},inplace=True)
series = dataFrame[column_name]
return series
def boxPlot(dataFrame,m_n,fig_name):
if windows:
target_path = temp_out+'concavity_boxplots\\'
else:
target_path = target+'concavity_boxplots/'
if not os.path.exists(target_path):
os.makedirs(target_path)
# Create a figure
fig = plt.figure(1, figsize=(18,9))
# Create an axes
ax = fig.add_subplot(111)
plt.ylabel("KSN", fontsize = 24)
plt.title(("KSN "+fig_name+m_n), fontsize = 32)
# Create the boxplot
#bp = ax.boxplot(data_to_plot, labels=header_list, showfliers=False)
bp = dataFrame.boxplot(showfliers=False)
plt.tick_params(axis='both', which='major', labelsize=18)
# Save the figure
fig.savefig(target_path+fig_name+m_n+'_box.png', bbox_inches='tight')
#required to clear the axes. Each call of this function wouldn't do that otherwise.
plt.cla()
#function to select data by column range
def selector(dataFrame,column,range_min,range_max,columns_for_joy=[],return_series=False):
#dataFrame.sort_values(by=[column])
print column,range_min,range_max
selected = dataFrame[dataFrame[column].isin(range(range_min,range_max))]
if return_series:
count = counter(selected)
if count >= 100:
columns_for_joy.append(str(range_min)+'_'+str(range_max)+'_count:'+str(count))
series = renameToSeries(selected,str(range_min)+'_'+str(range_max)+'_count:'+str(count))
#print series
return series,columns_for_joy
return selected
def precipLithoBins(dataFrame,step,max_value):
#column = "m_chi"
mins = []
maxs = []
#helps with managing empty columns in joy plotting
columns_for_joy = []
for x in range(0,int(max_value),int(step)):
mins.append(x)
maxs.append(x+step)
#print mins,maxs
if max_value == 7000:
print("precipitation bins detected")
#column = "secondary_burned_data"
column = "secondary_burned_data"
precip_1,columns_for_joy = selector(dataFrame,column,mins[0],maxs[0],columns_for_joy,return_series=True)
precip_2,columns_for_joy = selector(dataFrame,column,mins[1],maxs[1],columns_for_joy,return_series=True)
precip_3,columns_for_joy = selector(dataFrame,column,mins[2],maxs[2],columns_for_joy,return_series=True)
precip_4,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
precip_5,columns_for_joy = selector(dataFrame,column,mins[4],maxs[4],columns_for_joy,return_series=True)
precip_6,columns_for_joy = selector(dataFrame,column,mins[5],maxs[5],columns_for_joy,return_series=True)
precip_7,columns_for_joy = selector(dataFrame,column,mins[6],maxs[6],columns_for_joy,return_series=True)
precip_1.reset_index(drop=True, inplace=True)
precip_2.reset_index(drop=True, inplace=True)
precip_3.reset_index(drop=True, inplace=True)
precip_4.reset_index(drop=True, inplace=True)
precip_5.reset_index(drop=True, inplace=True)
precip_6.reset_index(drop=True, inplace=True)
precip_7.reset_index(drop=True, inplace=True)
precip_bins = pd.concat([precip_1,precip_2,precip_3,precip_4,precip_5,precip_6,precip_7],axis=1)
return precip_bins,columns_for_joy
if max_value == 170000:
print("lithology bins detected")
column = "burned_data"
litho_3,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
litho_5,columns_for_joy = selector(dataFrame,column,mins[5],maxs[5],columns_for_joy,return_series=True)
litho_6,columns_for_joy = selector(dataFrame,column,mins[6],maxs[6],columns_for_joy,return_series=True)
litho_9,columns_for_joy = selector(dataFrame,column,mins[9],maxs[9],columns_for_joy,return_series=True)
litho_10,columns_for_joy = selector(dataFrame,column,mins[10],maxs[10],columns_for_joy,return_series=True)
litho_11,columns_for_joy = selector(dataFrame,column,mins[11],maxs[11],columns_for_joy,return_series=True)
litho_12,columns_for_joy = selector(dataFrame,column,mins[12],maxs[12],columns_for_joy,return_series=True)
litho_14,columns_for_joy = selector(dataFrame,column,mins[14],maxs[14],columns_for_joy,return_series=True)
litho_3.reset_index(drop=True, inplace=True)
litho_5.reset_index(drop=True, inplace=True)
litho_6.reset_index(drop=True, inplace=True)
litho_9.reset_index(drop=True, inplace=True)
litho_10.reset_index(drop=True, inplace=True)
litho_11.reset_index(drop=True, inplace=True)
litho_12.reset_index(drop=True, inplace=True)
litho_14.reset_index(drop=True, inplace=True)
litho_bins = pd.concat([litho_3,litho_5,litho_6,litho_9,litho_10,litho_11,litho_12,litho_14],axis=1)
return litho_bins,columns_for_joy
if max_value == 4:
print("simplified bins detected")
#column = "tertiary_burned_data"
column = "quaternary_burned_data"
simplified_1,columns_for_joy = selector(dataFrame,column,mins[0],maxs[0],columns_for_joy,return_series=True)
simplified_2,columns_for_joy = selector(dataFrame,column,mins[1],maxs[1],columns_for_joy,return_series=True)
simplified_3,columns_for_joy = selector(dataFrame,column,mins[2],maxs[2],columns_for_joy,return_series=True)
simplified_4,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
simplified_1.reset_index(drop=True, inplace=True)
simplified_2.reset_index(drop=True, inplace=True)
simplified_3.reset_index(drop=True, inplace=True)
simplified_4.reset_index(drop=True, inplace=True)
simplified_bins = pd.concat([simplified_1,simplified_2,simplified_3,simplified_4],axis=1)
return simplified_bins,columns_for_joy
if max_value == 500:
print("exhumation bins detected")
column = "tertiary_burned_data"
#column = "quaternary_burned_data"
exhumation_1,columns_for_joy = selector(dataFrame,column,mins[0],maxs[0],columns_for_joy,return_series=True)
exhumation_2,columns_for_joy = selector(dataFrame,column,mins[1],maxs[1],columns_for_joy,return_series=True)
exhumation_3,columns_for_joy = selector(dataFrame,column,mins[2],maxs[2],columns_for_joy,return_series=True)
exhumation_4,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
exhumation_5,columns_for_joy = selector(dataFrame,column,mins[4],maxs[4],columns_for_joy,return_series=True)
exhumation_6,columns_for_joy = selector(dataFrame,column,mins[5],maxs[5],columns_for_joy,return_series=True)
exhumation_7,columns_for_joy = selector(dataFrame,column,mins[6],maxs[6],columns_for_joy,return_series=True)
exhumation_8,columns_for_joy = selector(dataFrame,column,mins[7],maxs[7],columns_for_joy,return_series=True)
exhumation_9,columns_for_joy = selector(dataFrame,column,mins[8],maxs[8],columns_for_joy,return_series=True)
exhumation_10,columns_for_joy = selector(dataFrame,column,mins[9],maxs[9],columns_for_joy,return_series=True)
exhumation_1.reset_index(drop=True, inplace=True)
exhumation_2.reset_index(drop=True, inplace=True)
exhumation_3.reset_index(drop=True, inplace=True)
exhumation_4.reset_index(drop=True, inplace=True)
exhumation_5.reset_index(drop=True, inplace=True)
exhumation_6.reset_index(drop=True, inplace=True)
exhumation_7.reset_index(drop=True, inplace=True)
exhumation_8.reset_index(drop=True, inplace=True)
exhumation_9.reset_index(drop=True, inplace=True)
exhumation_10.reset_index(drop=True, inplace=True)
exhumation_bins = pd.concat([exhumation_1,exhumation_2,exhumation_3,exhumation_4,exhumation_5,exhumation_6,exhumation_7,exhumation_8,exhumation_9,exhumation_10],axis=1)
return exhumation_bins,columns_for_joy
def columnLabeler(dataFrame,columns_for_joy,lithology=False,precipitation=False,exhumation =False):
glim_keys = ['Evaporites','Ice and Glaciers','Metamorphics','No Data',
'Acid plutonic rocks','Basic plutonic rocks',
'Intermediate plutonic rocks','Pyroclastics',
'Carbonate sedimentary rocks','Mixed sedimentary rocks',
'Siliciclastic sedimentary rocks','Unconsolidated sediments',
'Acid volcanic rocks','Basic volcanic rocks',
'Intermediate volcanic rocks','Water Bodies']
column_keys = ['10000_20000','20000_30000','30000_40000','40000_50000',
'50000_60000','60000_70000','70000_80000','80000_90000',
'90000_100000','100000_110000','110000_120000','120000_130000',
'130000_140000','140000_150000','150000_160000','160000_170000']
if lithology or precipitation:
df_header = dataFrame.columns.values.tolist()
new_headers = df_header
for x,y in zip(column_keys,glim_keys):
new_headers = [z.replace(x,y) for z in new_headers]
for x,y in zip(df_header,new_headers):
y = y.replace('_','\n')
y = y.replace(' ','\n')
try:
dataFrame.rename(columns={x:y},inplace=True)
columns_for_joy = [a.replace(x,y) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s glim key"%(x,y))
if precipitation:
header_list = dataFrame.columns.values.tolist()
new_label = [b.replace('_','\n') for b in header_list]
for c,d in zip(header_list,new_label):
try:
dataFrame.rename(columns={c:d},inplace=True)
columns_for_joy = [a.replace(c,d) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s intended value"%(c,d))
if exhumation:
df_header = dataFrame.columns.values.tolist()
new_headers = df_header
new_simplified_keys = ['0.5','1.0','1.5','2.0','2.5','3.0','3.5','4.0','4.5','5.0']
simplified_keys = ['0_50','50_100','100_150','150_200','200_250','250_300','300_350','350_400','400_450','450_500']
for x,y in zip(simplified_keys,new_simplified_keys):
new_headers = [z.replace(x,y) for z in new_headers]
for x,y in zip(df_header,new_headers):
y = y.replace('_','\n')
y = y.replace(' ','\n')
try:
dataFrame.rename(columns={x:y},inplace=True)
columns_for_joy = [a.replace(x,y) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s glim key"%(x,y))
if not precipitation and not lithology and not exhumation:
df_header = dataFrame.columns.values.tolist()
new_headers = df_header
new_simplified_keys = ['Sub_Himalaya','Lesser_Himalaya','Greater_Himalaya','Tethyan_Himalaya']
simplified_keys = ['0_1','1_2','2_3','3_4']
for x,y in zip(simplified_keys,new_simplified_keys):
new_headers = [z.replace(x,y) for z in new_headers]
for x,y in zip(df_header,new_headers):
y = y.replace('_','\n')
y = y.replace(' ','\n')
try:
dataFrame.rename(columns={x:y},inplace=True)
columns_for_joy = [a.replace(x,y) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s glim key"%(x,y))
return dataFrame,columns_for_joy
#script to get results as pandas dataframe.
def getMChiSegmented(path):
#windows modifications#
if windows:
with open(temp_path+path+'_MChiSegmented_burned.csv') as mChiSource:
pandasDF = pd.read_csv(mChiSource, delimiter=',')
else:
with open(target+path+'_MChiSegmented_burned.csv') as mChiSource:
pandasDF = pd.read_csv(mChiSource, delimiter=',')
return pandasDF
#m_n_list = [0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95]
m_n_list = [0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6]
simplified = ['sub','lesser','greater','tethyan']
number_b = [1,2,3,4]
for x in m_n_list:
x = str(x)
x = x.replace('.','_')
pandasDF = getMChiSegmented(x+'_ex')
litho,columns_for_joy_litho = precipLithoBins(pandasDF,10000,170000)
precip,columns_for_joy_precip = precipLithoBins(pandasDF,1000,7000)
#print columns_for_joy_litho
#print litho
litho,columns_for_joy_litho = columnLabeler(litho,columns_for_joy_litho,lithology=True)
precip,columns_for_joy_precip = columnLabeler(precip,columns_for_joy_precip,precipitation=True)
simplified_data,columns_for_joy_simplified = precipLithoBins(pandasDF,1,4)
simplified_data,columns_for_joy_precip = columnLabeler(simplified_data,columns_for_joy_simplified)
boxPlot(litho,x,"litho")
boxPlot(precip,x,"precip")
boxPlot(simplified_data,x,"simplified_data")
#dataFrame = selector(pandasDF,'tertiary_burned_data',1,4)
#display exhumation data
#need a float range, say 0.5 to begin
recastDF = recastingColumn(pandasDF)
#recastDF = recastDF['tertiary_burned_data']
#list_a = recastDF.tolist()
#print max(list_a)
exhumation_data,columns_for_joy_exhumation = precipLithoBins(recastDF,50,500)
#print exhumation_data
exhumation_data,columns_for_joy_exhumation = columnLabeler(exhumation_data,columns_for_joy_exhumation,exhumation=True)
boxPlot(exhumation_data,x,"exhumation_data")
#selecting data using exhumation rate. Most spread is at 0.3 mn
zip_a = [50,100,150]
zip_b = [100,150,200]
for b,c in zip(zip_a,zip_b):
exhumationDF = recastDF[recastDF['tertiary_burned_data'].isin(range(b,c))]
litho,columns_for_joy_litho = precipLithoBins(exhumationDF,10000,170000)
precip,columns_for_joy_precip = precipLithoBins(exhumationDF,1000,7000)
#print columns_for_joy_litho
#print litho
litho,columns_for_joy_litho = columnLabeler(litho,columns_for_joy_litho,lithology=True)
precip,columns_for_joy_precip = columnLabeler(precip,columns_for_joy_precip,precipitation=True)
b = (float(b)/100)
c = (float(c)/100)
boxPlot(litho,x,"litho_%s_%smm_exhumation"%(b,c))
boxPlot(precip,x,"precip_%s_%smm_exhumation"%(b,c))
#selecting data using simplified fault zones
for name,y in zip(simplified,number_b):
# dataFrame = pandasDF[pandasDF['tertiary_burned_data'] == y]
dataFrame = pandasDF[pandasDF['quaternary_burned_data'] == y]
litho,columns_for_joy_litho = precipLithoBins(dataFrame,10000,170000)
precip,columns_for_joy_precip = precipLithoBins(dataFrame,1000,7000)
#print columns_for_joy_litho
#print litho
litho,columns_for_joy_litho = columnLabeler(litho,columns_for_joy_litho,lithology=True)
precip,columns_for_joy_precip = columnLabeler(precip,columns_for_joy_precip,precipitation=True)
boxPlot(litho,x,"litho "+name)
boxPlot(precip,x,"precip "+name)