-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspatial_variability.py
239 lines (185 loc) · 9.5 KB
/
spatial_variability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#spatial variability
#bin data according to latitude/longitude
import matplotlib
from scipy import stats as stats
matplotlib.use("Agg")
from matplotlib import pyplot as plt
import pandas as pd
import csv
import joyplot
joyplot.plt.switch_backend('agg')
import os
#setting paths
target = '/exports/csce/datastore/geos/users/s1134744/LSDTopoTools/Topographic_projects/Himalayan_front/'
name = 'mchi_pandas_output_extra_burn.csv'
subdirectory = 'annual_lon_bins_2_5_bins/'
## functions ##
#recast calculation
def multiply(x):
return x*100
#function to temporarily recast latitude and longitude data to integer values whilst retaining 2 decimal place
def recastingLatLon(dataFrame):
dataFrame[["latitude","longitude"]] = dataFrame[["latitude","longitude"]].apply(multiply)
dataFrame[["latitude","longitude"]] = dataFrame[["latitude","longitude"]].astype(int)
return dataFrame
def counter(pandasDF):
list_a = pandasDF["m_chi"]
list_a = list_a.tolist()
count = len(list_a)
return count
def renameToSeries(dataFrame,column_name):
column = "m_chi"
dataFrame.rename(columns={column:column_name},inplace=True)
series = dataFrame[column_name]
return series
#function to select data by column range
def selector(dataFrame,column,range_min,range_max,columns_for_joy=[],return_series=False):
#dataFrame.sort_values(by=[column])
print column,range_min,range_max
selected = dataFrame[dataFrame[column].isin(range(range_min,range_max))]
if return_series:
count = counter(selected)
if count >= 100:
columns_for_joy.append(str(range_min)+'_'+str(range_max)+'_count:'+str(count))
series = renameToSeries(selected,str(range_min)+'_'+str(range_max)+'_count:'+str(count))
return series,columns_for_joy
return selected
def precipLithoBins(dataFrame,step,max_value):
#column = "m_chi"
mins = []
maxs = []
#helps with managing empty columns in joy plotting
columns_for_joy = []
for x in range(0,max_value,step):
mins.append(x)
maxs.append(x+step)
if max_value == 7000:
print("precipitation bins detected")
column = "secondary_burned_data"
#column = "non_monsoon"
precip_1,columns_for_joy = selector(dataFrame,column,mins[0],maxs[0],columns_for_joy,return_series=True)
precip_2,columns_for_joy = selector(dataFrame,column,mins[1],maxs[1],columns_for_joy,return_series=True)
precip_3,columns_for_joy = selector(dataFrame,column,mins[2],maxs[2],columns_for_joy,return_series=True)
precip_4,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
precip_5,columns_for_joy = selector(dataFrame,column,mins[4],maxs[4],columns_for_joy,return_series=True)
precip_6,columns_for_joy = selector(dataFrame,column,mins[5],maxs[5],columns_for_joy,return_series=True)
precip_7,columns_for_joy = selector(dataFrame,column,mins[6],maxs[6],columns_for_joy,return_series=True)
precip_1.reset_index(drop=True, inplace=True)
precip_2.reset_index(drop=True, inplace=True)
precip_3.reset_index(drop=True, inplace=True)
precip_4.reset_index(drop=True, inplace=True)
precip_5.reset_index(drop=True, inplace=True)
precip_6.reset_index(drop=True, inplace=True)
precip_7.reset_index(drop=True, inplace=True)
precip_bins = pd.concat([precip_1,precip_2,precip_3,precip_4,precip_5,precip_6,precip_7],axis=1)
return precip_bins,columns_for_joy
if max_value == 170000:
print("lithology bins detected")
column = "burned_data"
litho_3,columns_for_joy = selector(dataFrame,column,mins[3],maxs[3],columns_for_joy,return_series=True)
litho_5,columns_for_joy = selector(dataFrame,column,mins[5],maxs[5],columns_for_joy,return_series=True)
litho_6,columns_for_joy = selector(dataFrame,column,mins[6],maxs[6],columns_for_joy,return_series=True)
litho_9,columns_for_joy = selector(dataFrame,column,mins[9],maxs[9],columns_for_joy,return_series=True)
litho_10,columns_for_joy = selector(dataFrame,column,mins[10],maxs[10],columns_for_joy,return_series=True)
litho_11,columns_for_joy = selector(dataFrame,column,mins[11],maxs[11],columns_for_joy,return_series=True)
litho_12,columns_for_joy = selector(dataFrame,column,mins[12],maxs[12],columns_for_joy,return_series=True)
litho_14,columns_for_joy = selector(dataFrame,column,mins[14],maxs[14],columns_for_joy,return_series=True)
litho_3.reset_index(drop=True, inplace=True)
litho_5.reset_index(drop=True, inplace=True)
litho_6.reset_index(drop=True, inplace=True)
litho_9.reset_index(drop=True, inplace=True)
litho_10.reset_index(drop=True, inplace=True)
litho_11.reset_index(drop=True, inplace=True)
litho_12.reset_index(drop=True, inplace=True)
litho_14.reset_index(drop=True, inplace=True)
litho_bins = pd.concat([litho_3,litho_5,litho_6,litho_9,litho_10,litho_11,litho_12,litho_14],axis=1)
return litho_bins,columns_for_joy
def boxPlot(dataFrame,fig_name):
if not os.path.exists(target+subdirectory+'boxplots/'):
os.makedirs(target+subdirectory+'boxplots/')
# Create a figure
fig = plt.figure(1, figsize=(18,9))
# Create an axes
ax = fig.add_subplot(111)
plt.ylabel("KSN", fontsize = 24)
plt.title(("KSN "+fig_name), fontsize = 32)
# Create the boxplot
#bp = ax.boxplot(data_to_plot, labels=header_list, showfliers=False)
bp = dataFrame.boxplot(showfliers=False)
plt.tick_params(axis='both', which='major', labelsize=18)
# Save the figure
fig.savefig(target+subdirectory+'/boxplots/'+fig_name+'_box.png', bbox_inches='tight')
#required to clear the axes. Each call of this function wouldn't do that otherwise.
plt.cla()
def joyPlot(dataFrame,fig_name,columns_for_joy):
if not os.path.exists(target+subdirectory+'/joyplots/'):
os.makedirs(target+subdirectory+'/joyplots/')
x_range = [0,100]
fig,axes=joyplot.joyplot(dataFrame,column=columns_for_joy,figsize=(20,10),x_range=x_range,title=fig_name)
fig.savefig(target+subdirectory+'/joyplots/'+fig_name+'_joy.png', bbox_inches='tight')
def columnLabeler(dataFrame,columns_for_joy,precipitation=False):
glim_keys = ['Evaporites','Ice and Glaciers','Metamorphics','No Data',
'Acid plutonic rocks','Basic plutonic rocks',
'Intermediate plutonic rocks','Pyroclastics',
'Carbonate sedimentary rocks','Mixed sedimentary rocks',
'Siliciclastic sedimentary rocks','Unconsolidated sediments',
'Acid volcanic rocks','Basic volcanic rocks',
'Intermediate volcanic rocks','Water Bodies']
column_keys = ['10000_20000','20000_30000','30000_40000','40000_50000',
'50000_60000','60000_70000','70000_80000','80000_90000',
'90000_100000','100000_110000','110000_120000','120000_130000',
'130000_140000','140000_150000','150000_160000','160000_170000']
if not precipitation:
df_header = dataFrame.columns.values.tolist()
new_headers = df_header
for x,y in zip(column_keys,glim_keys):
new_headers = [z.replace(x,y) for z in new_headers]
for x,y in zip(df_header,new_headers):
y = y.replace('_','\n')
y = y.replace(' ','\n')
try:
dataFrame.rename(columns={x:y},inplace=True)
columns_for_joy = [a.replace(x,y) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s glim key"%(x,y))
if precipitation:
header_list = dataFrame.columns.values.tolist()
new_label = [b.replace('_','\n') for b in header_list]
for c,d in zip(header_list,new_label):
try:
dataFrame.rename(columns={c:d},inplace=True)
columns_for_joy = [a.replace(c,d) for a in columns_for_joy]
except:
print("Error in replacing the %s column with the %s intended value"%(c,d))
return dataFrame,columns_for_joy
## main ##
#reading csvfile
with open(target+name,'r') as csvfile:
dataFrame = pd.read_csv(csvfile,delimiter=',')
integerLatLon = recastingLatLon(dataFrame)
print integerLatLon
#lon varies 72 degrees to 95 degrees
#lat varies 27 degrees to 31.5 degrees
start = 7200
end = 9700
step = 250
if not os.path.exists(target+subdirectory):
os.makedirs(target+subdirectory)
for x in range(start,end,step):
bin = selector(integerLatLon,"longitude",x,x+step)
x = float(x)/100
bin.to_csv(target+subdirectory+str(x)+'_'+name,mode="w",header=True,index=False)
precip,columns_for_joy_precip = precipLithoBins(bin,1000,7000)
litho,columns_for_joy_litho = precipLithoBins(bin,10000,170000)
precip.to_csv(target+subdirectory+str(x)+'_precip_'+name,mode="w",header=True,index=False)
litho.to_csv(target+subdirectory+str(x)+'_litho_'+name,mode="w",header=True,index=False)
litho,columns_for_joy_litho = columnLabeler(litho,columns_for_joy_litho)
precip,columns_for_joy_precip = columnLabeler(precip,columns_for_joy_precip,precipitation=True)
boxPlot(litho,'litho_'+str(x))
boxPlot(precip,'precip_'+str(x))
try:
joyPlot(litho,'litho_'+str(x),columns_for_joy_litho)
joyPlot(precip,'precip_'+str(x),columns_for_joy_precip)
except:
print("found an error in "+str(x))
print x