forked from gadia-aayush/Predicting-Energy-Values
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_final_arima-modelling.py
83 lines (74 loc) · 2.8 KB
/
3_final_arima-modelling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu May 31 17:21:55 2018
@author: aayushgadia
"""
import warnings
from pandas import Series
from matplotlib import pyplot
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from math import sqrt
import numpy
#ARIMA Model Implement on Modelling Dataset:
#ARIMA will automatically handle the Non-Stationarity.
# Automatically Configuring ARIMA by finding p,d,q values
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return numpy.array(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# evaluate an ARIMA model for a given order (p,d,q) and return RMSE
def evaluate_arima_model(X, arima_order):
# prepare training dataset
X = X.astype('float32')
train_size = int(len(X) * 0.50)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
# difference data
daily_records = 1 #we don't have any seasonal trends....so simply subtracting by previous value..
diff = difference(history, daily_records)
model = ARIMA(diff, order=arima_order)
model_fit = model.fit(trend='nc', disp=0)
yhat = model_fit.forecast()[0]
yhat = inverse_difference(history, yhat, daily_records)
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
mse = mean_squared_error(test, predictions)
rmse = sqrt(mse)
return rmse
# evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(dataset, p_values, d_values, q_values):
dataset = dataset.astype('float32')
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best_score, best_cfg = mse, order
print('ARIMA%s RMSE=%.3f' % (order,mse))
except:
continue
print('Best ARIMA%s RMSE=%.3f' % (best_cfg, best_score))
# load dataset
series = Series.from_csv('final_dataset.csv')
# evaluate parameters
p_values = range(0, 7)
d_values = range(0, 3)
q_values = range(0, 7)
warnings.filterwarnings("ignore")
evaluate_models(series.values, p_values, d_values, q_values)
#After Executing the Program, we see that (1,0,0) is best suited with RMSE= 27.400