This repository was archived by the owner on May 27, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainSic.lua
executable file
·188 lines (156 loc) · 5.19 KB
/
trainSic.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
--[[
Author: Hua He
--]]
require('torch')
require('nn')
require('nngraph')
require('optim')
require('xlua')
require('sys')
require('lfs')
--require('../')
--require('./util')
--nngraph.setDebug(true)
similarityMeasure = {}
include('util/read_data.lua')
include('util/Vocab.lua')
include('CsDis.lua')
include('init.lua')
printf = utils.printf
-- global paths (modify if desired)
similarityMeasure.data_dir = 'data'
similarityMeasure.models_dir = 'trained_models'
similarityMeasure.predictions_dir = 'predictions'
function header(s)
print(string.rep('-', 80))
print(s)
print(string.rep('-', 80))
end
function pearson(x, y)
x = x - x:mean()
y = y - y:mean()
return x:dot(y) / (x:norm() * y:norm())
end
-- read command line arguments
local args = lapp [[
Training script for semantic relatedness prediction on the Twitter dataset.
-m,--model (default dependency) Model architecture: [dependency, lstm, bilstm]
-l,--layers (default 1) Number of layers (ignored for Tree-LSTM)
-d,--dim (default 150) LSTM memory dimension
]]
--torch.seed()
torch.manualSeed(123)
print('<torch> using the automatic seed: ' .. torch.initialSeed())
-- directory containing dataset files
local data_dir = 'data/sick/'
-- load vocab
local vocab = similarityMeasure.Vocab(data_dir .. 'vocab.txt')
-- load embeddings
print('loading word embeddings')
local emb_dir = './data/glove/'
--local emb_prefix = emb_dir .. 'glove.twitter.27B'
local emb_prefix = emb_dir .. 'glove.840B'
local emb_vocab, emb_vecs = similarityMeasure.read_embedding(emb_prefix .. '.vocab', emb_prefix .. '.300d.th')
local emb_dim = emb_vecs:size(2)
-- use only vectors in vocabulary (not necessary, but gives faster training)
local num_unk = 0
local vecs = torch.Tensor(vocab.size, emb_dim)
for i = 1, vocab.size do
local w = vocab:token(i)
if emb_vocab:contains(w) then
vecs[i] = emb_vecs[emb_vocab:index(w)]
elseif i == vocab.size then
vecs[i]:zero()
else
num_unk = num_unk + 1
vecs[i]:uniform(-0.05, 0.05)
end
end
print('unk count = ' .. num_unk)
emb_vocab = nil
emb_vecs = nil
collectgarbage()
taskD = 'sic'
-- load datasets
print('loading ' .. taskD .. ' datasets')
local train_dir = data_dir .. 'train/'
local dev_dir = data_dir .. 'dev/'
local test_dir = data_dir .. 'test/'
local train_dataset = similarityMeasure.read_relatedness_dataset(train_dir, vocab, taskD)
local dev_dataset = similarityMeasure.read_relatedness_dataset(dev_dir, vocab, taskD)
local test_dataset = similarityMeasure.read_relatedness_dataset(test_dir, vocab, taskD)
local lmax = math.max(train_dataset.lmaxsize, dev_dataset.lmaxsize, test_dataset.lmaxsize)
local rmax = math.max(train_dataset.rmaxsize, dev_dataset.rmaxsize, test_dataset.rmaxsize)
train_dataset.lmaxsize = lmax
dev_dataset.lmaxsize = lmax
test_dataset.lmaxsize = lmax
train_dataset.rmaxsize = rmax
dev_dataset.rmaxsize = rmax
test_dataset.rmaxsize = rmax
printf('lmax = %d | train lmax = %d | dev lmax = %d\n', lmax, train_dataset.lmaxsize, dev_dataset.lmaxsize)
printf('rmax = %d | train rmax = %d | dev rmax = %d\n', rmax, train_dataset.rmaxsize, dev_dataset.rmaxsize)
printf('num train = %d\n', train_dataset.size)
printf('num dev = %d\n', dev_dataset.size)
printf('num test = %d\n', test_dataset.size)
-- initialize model
local config = {
input_dim = 300,
mem_cols = 300,
emb_vecs = vecs,
-- structure = 'NTM',
read_heads = 1,
task = taskD,
cont_dim = 250,
structure = 'lstm',
}
include('NTM.bilstm.entail.share.lua')
local num_epochs = 35
local model = nil
local loadSave = false
if loadSave then
include('./models/AlignMaxDropLeakyMulti.lua')
include('./models/very_deep.lua')
local modeladdr = "/YOUR_LOCAL_ADDRESS/bestModelOnSic.th"
print("Loading Saved Model: " .. modeladdr)
model = torch.load(modeladdr)
num_epochs = 1
else
model = ntm.NTM(config)
end
-- print information
header('model configuration')
printf('max epochs = %d\n', num_epochs)
model:print_config()
if lfs.attributes(similarityMeasure.predictions_dir) == nil then
lfs.mkdir(similarityMeasure.predictions_dir)
end
-- train
local train_start = sys.clock()
local best_dev_score = -1.0
local best_dev_model = model
-- threads
--torch.setnumthreads(4)
--print('<torch> number of threads in used: ' .. torch.getnumthreads())
header('Training model on data: ' .. taskD)
local id = 531
print("Id: " .. id)
for i = 1, num_epochs do
local start = sys.clock()
print('--------------- EPOCH ' .. i .. '--- -------------')
if not loadSave then
model:trainCombineSeme(train_dataset)
print('Finished epoch in ' .. ( sys.clock() - start) )
local dev_predictions = model:predict_dataset(dev_dataset)
dev_map_score = pearson(dev_predictions, dev_dataset.labels)
printf('[DEV] score: %.4f\n', dev_map_score)
end
if not loadSave and dev_map_score >= best_dev_score then
print("Saving best models onto Disk.")
torch.save("/YOUR_LOCAL_ADDRESS/savedModel/bestModelOnSic.ep" .. id ..".th", model)
best_dev_score = dev_map_score
end
local test_predictions = model:predict_dataset(test_dataset)
local score = pearson(test_predictions, test_dataset.labels)
printf('[TEST] score: %.4f\n', score)
end
print('finished training in ' .. (sys.clock() - train_start))