forked from roboflow/roboflow-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.py
711 lines (592 loc) · 25.1 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
import datetime
import json
import mimetypes
import os
import sys
import time
import warnings
from typing import Dict, List, Optional, Union
import filetype
import requests
from roboflow.adapters import rfapi
from roboflow.config import API_URL, DEMO_KEYS
from roboflow.core.version import Version
from roboflow.util.general import Retry
from roboflow.util.image_utils import load_labelmap
ACCEPTED_IMAGE_FORMATS = {
"image/bmp",
"image/jpeg",
"image/png",
"image/webp",
}
def custom_formatwarning(msg, *args, **kwargs):
# ignore everything except the message
return str(msg) + "\n"
warnings.formatwarning = custom_formatwarning # type: ignore[assignment]
class Project:
"""
A Roboflow Project.
"""
def __init__(self, api_key: str, a_project: dict, model_format: Optional[str] = None):
"""
Create a Project object that represents a Project associated with a Workspace.
Args:
api_key (str): private roboflow api key
a_project (str): the project id
model_format (str): the model format of the project
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
"""
if api_key in DEMO_KEYS:
self.__api_key = api_key
self.model_format = model_format
else:
self.__api_key = api_key
self.annotation = a_project["annotation"]
self.classes = a_project["classes"]
self.colors = a_project["colors"]
self.created = datetime.datetime.fromtimestamp(a_project["created"])
self.id = a_project["id"]
self.images = a_project["images"]
self.name = a_project["name"]
self.public = a_project["public"]
self.splits = a_project["splits"]
self.type = a_project["type"]
self.unannotated = a_project["unannotated"]
self.updated = datetime.datetime.fromtimestamp(a_project["updated"])
self.model_format = model_format
temp = self.id.rsplit("/")
self.__workspace = temp[0]
self.__project_name = temp[1]
def get_version_information(self):
"""
Retrieve all versions of a project.
Returns:
A list of all versions of the project.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> version_info = project.get_version_information()
"""
dataset_info = requests.get(
API_URL + "/" + self.__workspace + "/" + self.__project_name + "?api_key=" + self.__api_key
)
# Throw error if dataset isn't valid/user doesn't have permissions to access the dataset # noqa: E501 // docs
if dataset_info.status_code != 200:
raise RuntimeError(dataset_info.text)
dataset_info = dataset_info.json()
return dataset_info["versions"]
def list_versions(self):
"""
Print out versions for that specific project.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> project.list_versions()
"""
version_info = self.get_version_information()
print(version_info)
def versions(self):
"""
Return all versions in the project as Version objects.
Returns:
A list of Version objects.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> versions = project.versions()
"""
version_info = self.get_version_information()
version_array = []
for a_version in version_info:
version_object = Version(
a_version,
(self.type if "model" in a_version else None),
self.__api_key,
self.name,
a_version["id"],
self.model_format,
local=None,
workspace=self.__workspace,
project=self.__project_name,
public=self.public,
colors=self.colors,
)
version_array.append(version_object)
return version_array
def generate_version(self, settings):
"""
Generate a version of a dataset hosted on Roboflow.
Args:
settings: A Python dict with augmentation and preprocessing keys and specifications for generation. These settings mirror capabilities available via the Roboflow UI.
For example:
{
"augmentation": {
"bbblur": { "pixels": 1.5 },
"bbbrightness": { "brighten": true, "darken": false, "percent": 91 },
"bbcrop": { "min": 12, "max": 71 },
"bbexposure": { "percent": 30 },
"bbflip": { "horizontal": true, "vertical": false },
"bbnoise": { "percent": 50 },
"bbninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
"bbrotate": { "degrees": 45 },
"bbshear": { "horizontal": 45, "vertical": 45 },
"blur": { "pixels": 1.5 },
"brightness": { "brighten": true, "darken": false, "percent": 91 },
"crop": { "min": 12, "max": 71 },
"cutout": { "count": 26, "percent": 71 },
"exposure": { "percent": 30 },
"flip": { "horizontal": true, "vertical": false },
"hue": { "degrees": 180 },
"image": { "versions": 32 },
"mosaic": true,
"ninety": { "clockwise": true, "counter-clockwise": false, "upside-down": false },
"noise": { "percent": 50 },
"rgrayscale": { "percent": 50 },
"rotate": { "degrees": 45 },
"saturation": { "percent": 50 },
"shear": { "horizontal": 45, "vertical": 45 }
},
"preprocessing": {
"auto-orient": true,
"contrast": { "type": "Contrast Stretching" },
"filter-null": { "percent": 50 },
"grayscale": true,
"isolate": true,
"remap": { "original_class_name": "new_class_name" },
"resize": { "width": 200, "height": 200, "format": "Stretch to" },
"static-crop": { "x_min": 10, "x_max": 90, "y_min": 10, "y_max": 90 },
"tile": { "rows": 2, "columns": 2 }
}
}
Returns:
int: The version number that is being generated.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> versions = project.generate_version(settings={...})
""" # noqa: E501 // docs
if not {"augmentation", "preprocessing"} <= settings.keys():
raise (
RuntimeError(
"augmentation and preprocessing keys are required to generate. If"
" none are desired specify empty dict associated with that key."
)
)
r = requests.post(
f"{API_URL}/{self.__workspace}/{self.__project_name}/" f"generate?api_key={self.__api_key}",
json=settings,
)
try:
r_json = r.json()
except Exception:
raise RuntimeError("Error when requesting to generate a new version for project.")
# if the generation succeeds, return the version that is being generated
if r.status_code == 200:
sys.stdout.write("\r" + r_json["message"] + " for new version " + str(r_json["version"]) + ".")
sys.stdout.write("\n")
sys.stdout.flush()
return int(r_json["version"])
else:
if "error" in r_json.keys():
raise RuntimeError(r_json["error"])
else:
raise RuntimeError(json.dumps(r_json))
def train(
self,
new_version_settings={
"preprocessing": {
"auto-orient": True,
"resize": {"width": 640, "height": 640, "format": "Stretch to"},
},
"augmentation": {},
},
speed=None,
checkpoint=None,
plot_in_notebook=False,
):
"""
Ask the Roboflow API to train a previously exported version's dataset.
Args:
speed: Whether to train quickly or accurately. Note: accurate training is a paid feature. Default speed is `fast`.
checkpoint: A string representing the checkpoint to use while training
plot: Whether to plot the training loss curve. Default is False.
Returns:
True
Raises:
RuntimeError: If the Roboflow API returns an error with a helpful JSON body
HTTPError: If the Network/Roboflow API fails and does not return JSON
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> version = project.version(1)
>>> version.train()
""" # noqa: E501 // docs
new_version = self.generate_version(settings=new_version_settings)
new_version = self.version(new_version)
new_model = new_version.train(speed=speed, checkpoint=checkpoint, plot_in_notebook=plot_in_notebook)
return new_model
def version(self, version_number: int, local: Optional[str] = None):
"""
Retrieves information about a specific version and returns a Version() object.
Args:
version_number (int): the version number that you want to retrieve
local (str): specifies the localhost address and port if pointing towards local inference engine
Returns:
Version() object
""" # noqa: E501 // docs
if self.__api_key in DEMO_KEYS:
name = ""
if self.__api_key == "coco-128-sample":
name = "coco-128"
else:
name = "chess-pieces-new"
return Version(
{},
"type",
self.__api_key,
name,
version_number,
self.model_format,
local=None,
workspace="",
project="",
public=True,
)
version_info = self.get_version_information()
for version_object in version_info:
current_version_num = os.path.basename(version_object["id"])
if current_version_num == str(version_number):
vers = Version(
version_object,
self.type,
self.__api_key,
self.name,
current_version_num,
self.model_format,
local=local,
workspace=self.__workspace,
project=self.__project_name,
public=self.public,
colors=self.colors,
)
return vers
raise RuntimeError(f"Version number {version_number} is not found.")
def check_valid_image(self, image_path: str) -> bool:
"""
Check if an image is valid. Useful before attempting to upload an image to Roboflow.
Args:
image_path (str): path to image you'd like to check
Returns:
bool: whether the image is valid or not
"""
kind = filetype.guess(image_path)
if kind is None:
return False
extension_mimetype, _ = mimetypes.guess_type(image_path)
if extension_mimetype and extension_mimetype != kind.mime:
print(f"[{image_path}] file type ({kind.mime}) does not match filename extension.")
return kind.mime in ACCEPTED_IMAGE_FORMATS
def upload(
self,
image_path: str,
annotation_path: Optional[str] = None,
hosted_image: bool = False,
image_id: Optional[str] = None,
split: str = "train",
num_retry_uploads: int = 0,
batch_name: Optional[str] = None,
tag_names: list = [],
is_prediction: bool = False,
**kwargs,
):
"""
Upload an image or annotation to the Roboflow API.
Args:
image_path (str): path to image you'd like to upload
annotation_path (str): path to the annotation file. If not provided, the image will be uploaded without annotation.
Special case: in classification projects, this can instead be a class name. e.g. "dog".
hosted_image (bool): whether the image is hosted
image_id (str): id of the image
split (str): which split to upload to - "train", "valid" or "test"
num_retry_uploads (int): how many times to retry upload on failure
batch_name (str): name of batch to upload to within project
tag_names (list[str]): tags to be applied to an image
is_prediction (bool): whether the annotation data is a prediction rather than ground truth
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> project.upload(image_path="YOUR_IMAGE.jpg")
""" # noqa: E501 // docs
is_hosted = image_path.startswith("http://") or image_path.startswith("https://")
is_file = os.path.isfile(image_path) or is_hosted
is_dir = os.path.isdir(image_path)
if not is_file and not is_dir:
raise RuntimeError(
f"The provided image path [ {image_path} ] is not a valid path. Please provide a"
" path to an image or a directory."
)
if is_file:
is_image = is_hosted or self.check_valid_image(image_path)
if not is_image:
raise RuntimeError(
"The image you provided {} is not a supported file format. We" " currently support: {}.".format(
image_path, ", ".join(ACCEPTED_IMAGE_FORMATS)
)
)
self.single_upload(
image_path=image_path,
annotation_path=annotation_path,
hosted_image=hosted_image,
image_id=image_id,
split=split,
num_retry_uploads=num_retry_uploads,
batch_name=batch_name,
tag_names=tag_names,
is_prediction=is_prediction,
**kwargs,
)
else:
images = os.listdir(image_path)
for image in images:
path = image_path + "/" + image
if self.check_valid_image(path):
self.single_upload(
image_path=path,
annotation_path=annotation_path,
hosted_image=hosted_image,
image_id=image_id,
split=split,
num_retry_uploads=num_retry_uploads,
batch_name=batch_name,
tag_names=tag_names,
is_prediction=is_prediction,
**kwargs,
)
print("[ " + path + " ] was uploaded succesfully.")
else:
print("[ " + path + " ] was skipped.")
continue
def single_upload(
self,
image_path=None,
annotation_path=None,
annotation_labelmap=None,
hosted_image=False,
image_id=None,
split="train",
num_retry_uploads=0,
batch_name=None,
tag_names=[],
is_prediction: bool = False,
annotation_overwrite=False,
sequence_number=None,
sequence_size=None,
**kwargs,
):
project_url = self.id.rsplit("/")[1]
if image_path and image_id:
raise Exception("You can't pass both image_id and image_path")
if not (image_path or image_id):
raise Exception("You need to pass image_path or image_id")
if isinstance(annotation_labelmap, str):
annotation_labelmap = load_labelmap(annotation_labelmap)
uploaded_image, uploaded_annotation = None, None
upload_time = None
upload_retry_attempts = 0
if image_path:
t0 = time.time()
try:
retry = Retry(num_retry_uploads, Exception)
uploaded_image = retry(
rfapi.upload_image,
self.__api_key,
project_url,
image_path,
hosted_image=hosted_image,
split=split,
batch_name=batch_name,
tag_names=tag_names,
sequence_number=sequence_number,
sequence_size=sequence_size,
**kwargs,
)
image_id = uploaded_image["id"] # type: ignore[index]
upload_retry_attempts = retry.retries
except BaseException as e:
uploaded_image = {"error": e}
finally:
upload_time = time.time() - t0
annotation_time = None
if annotation_path and image_id:
annotation_name, annotation_str = self._annotation_params(annotation_path)
try:
t0 = time.time()
uploaded_annotation = rfapi.save_annotation(
self.__api_key,
project_url,
annotation_name, # type: ignore[type-var]
annotation_str, # type: ignore[type-var]
image_id,
job_name=batch_name, # type: ignore[type-var]
is_prediction=is_prediction,
annotation_labelmap=annotation_labelmap,
overwrite=annotation_overwrite,
)
except BaseException as e:
uploaded_annotation = {"error": e}
finally:
annotation_time = time.time() - t0
return {
"image": uploaded_image,
"annotation": uploaded_annotation,
"upload_time": upload_time,
"annotation_time": annotation_time,
"upload_retry_attempts": upload_retry_attempts,
}
def _annotation_params(self, annotation_path):
annotation_name, annotation_string = None, None
if isinstance(annotation_path, dict) and annotation_path.get("rawText"):
annotation_name = annotation_path["name"]
annotation_string = annotation_path["rawText"]
elif os.path.exists(annotation_path): # type: ignore[arg-type]
with open(annotation_path): # type: ignore[arg-type]
annotation_string = open(annotation_path).read() # type: ignore[arg-type]
annotation_name = os.path.basename(annotation_path) # type: ignore[arg-type]
elif self.type == "classification":
print(f"-> using {annotation_path} as classname for classification project")
annotation_string = annotation_path
annotation_name = annotation_path
else:
raise Exception(
f"File not found or uploading to non-classification "
f"type project with invalid string. - {annotation_path}"
)
return annotation_name, annotation_string
def search(
self,
like_image: Optional[str] = None,
prompt: Optional[str] = None,
offset: int = 0,
limit: int = 100,
tag: Optional[str] = None,
class_name: Optional[str] = None,
in_dataset: Optional[str] = None,
batch: bool = False,
batch_id: Optional[str] = None,
fields: list = ["id", "created", "name", "labels"],
):
"""
Search for images in a project.
Args:
like_image (str): name of an image in your dataset to use if you want to find images similar to that one
prompt (str): search prompt
offset (int): offset of results
limit (int): limit of results
tag (str): tag that an image must have
class_name (str): class name that an image must have
in_dataset (str): dataset that an image must be in
batch (bool): whether the image must be in a batch
batch_id (str): batch id that an image must be in
fields (list): fields to return in results (default: ["id", "created", "name", "labels"])
Returns:
A list of images that match the search criteria.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> results = project.search(query="cat", limit=10)
""" # noqa: E501 // docs
payload: Dict[str, Union[str, int, List[str]]] = {}
if like_image is not None:
payload["like_image"] = like_image
if prompt is not None:
payload["prompt"] = prompt
if offset is not None:
payload["offset"] = offset
if limit is not None:
payload["limit"] = limit
if tag is not None:
payload["tag"] = tag
if class_name is not None:
payload["class_name"] = class_name
if in_dataset is not None:
payload["in_dataset"] = in_dataset
if batch is not None:
payload["batch"] = batch
if batch_id is not None:
payload["batch_id"] = batch_id
payload["fields"] = fields
data = requests.post(
API_URL + "/" + self.__workspace + "/" + self.__project_name + "/search?api_key=" + self.__api_key,
json=payload,
)
return data.json()["results"]
def search_all(
self,
like_image: Optional[str] = None,
prompt: Optional[str] = None,
offset: int = 0,
limit: int = 100,
tag: Optional[str] = None,
class_name: Optional[str] = None,
in_dataset: Optional[str] = None,
batch: bool = False,
batch_id: Optional[str] = None,
fields: list = ["id", "created"],
):
"""
Create a paginated list of search results for use in searching the images in a project.
Args:
like_image (str): name of an image in your dataset to use if you want to find images similar to that one
prompt (str): search prompt
offset (int): offset of results
limit (int): limit of results
tag (str): tag that an image must have
class_name (str): class name that an image must have
in_dataset (str): dataset that an image must be in
batch (bool): whether the image must be in a batch
batch_id (str): batch id that an image must be in
fields (list): fields to return in results (default: ["id", "created", "name", "labels"])
Returns:
A list of images that match the search criteria.
Example:
>>> import roboflow
>>> rf = roboflow.Roboflow(api_key="")
>>> project = rf.workspace().project("PROJECT_ID")
>>> results = project.search_all(query="cat", limit=10)
>>> for result in results:
>>> print(result)
""" # noqa: E501 // docs
while True:
data = self.search(
like_image=like_image,
prompt=prompt,
offset=offset,
limit=limit,
tag=tag,
class_name=class_name,
in_dataset=in_dataset,
batch=batch,
batch_id=batch_id,
fields=fields,
)
yield data
if len(data) < limit:
break
offset += limit
def __str__(self):
"""
Show a string representation of a Project object.
"""
# String representation of project
json_str = {"name": self.name, "type": self.type, "workspace": self.__workspace}
return json.dumps(json_str, indent=2)