-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathlstm_sentence_classification.py
85 lines (64 loc) · 2.62 KB
/
lstm_sentence_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
import os
import numpy as np
import npdl
def prepare_data(nb_seq=20):
all_xs = []
all_ys = []
all_words = set()
all_labels = set()
# get all words and labels
with open(os.path.join(os.path.dirname(__file__), 'data/trec/TREC_10.label')) as fin:
for line in fin:
words = line.strip().split()
y = words[0].split(':')[0]
xs = words[1:]
all_xs.append(xs)
all_ys.append(y)
for word in words:
all_words.add(word)
all_labels.add(y)
word2idx = {w: i for i, w in enumerate(sorted(all_words))}
label2idx = {label: i for i, label in enumerate(sorted(all_labels))}
# get index words and labels
all_idx_xs = []
for sen in all_xs:
idx_x = [word2idx[word] for word in sen[:nb_seq]]
idx_x = [0] * (nb_seq - len(idx_x)) + idx_x
all_idx_xs.append(idx_x)
all_idx_xs = np.array(all_idx_xs, dtype='int32')
all_idx_ys = npdl.utils.data.one_hot(
np.array([label2idx[label] for label in all_ys], dtype='int32'))
return all_idx_xs, all_idx_ys, len(word2idx), len(label2idx)
def main(max_iter):
nb_batch = 30
nb_seq = 20
xs, ys, x_size, y_size = prepare_data(nb_seq)
net = npdl.Model()
net.add(npdl.layers.Embedding(nb_batch=nb_batch, nb_seq=nb_seq,
n_out=200, input_size=x_size,
static=True))
net.add(npdl.layers.BatchLSTM(n_out=400, return_sequence=True))
net.add(npdl.layers.BatchLSTM(n_out=200, return_sequence=True))
net.add(npdl.layers.MeanPooling((nb_seq, 1)))
net.add(npdl.layers.Flatten())
net.add(npdl.layers.Softmax(n_out=y_size))
net.compile(loss='scce', optimizer=npdl.optimizers.SGD(lr=0.005))
net.fit(xs, ys, batch_size=nb_batch, validation_split=0.1, max_iter=max_iter)
def main2(max_iter):
nb_batch = 30
nb_seq = 20
xs, ys, x_size, y_size = prepare_data(nb_seq)
net = npdl.Model()
net.add(npdl.layers.Embedding(nb_batch=nb_batch, nb_seq=nb_seq,
n_out=200, input_size=x_size,
static=False))
net.add(npdl.layers.BatchLSTM(n_out=400, return_sequence=True))
net.add(npdl.layers.BatchLSTM(n_out=200, return_sequence=True))
net.add(npdl.layers.MeanPooling((nb_seq, 1)))
net.add(npdl.layers.Flatten())
net.add(npdl.layers.Softmax(n_out=y_size))
net.compile(loss='scce', optimizer=npdl.optimizers.RMSprop())
net.fit(xs, ys, batch_size=nb_batch, validation_split=0.1, max_iter=max_iter)
if __name__ == '__main__':
main2(100)