-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathrnn-character-lm.py
66 lines (48 loc) · 2.45 KB
/
rnn-character-lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# -*- coding: utf-8 -*-
import os
import numpy as np
import npdl
def get_data():
corpus_path = os.path.join(os.path.dirname(__file__), 'data/lm/tiny_shakespeare.txt')
raw_text = open(corpus_path, 'r').read()
chars = list(set(raw_text))
data_size, vocab_size = len(raw_text), len(chars)
print("data has %s charactres, % unique." % (data_size, vocab_size))
char_to_index = {ch: i for i, ch in enumerate(chars)}
index_to_char = {i: ch for i, ch in enumerate(chars)}
time_steps, batch_size = 30, 40
length = batch_size * 20
text_pointers = np.random.randint(data_size - time_steps - 1, size=length)
batch_in = np.zeros([length, time_steps, vocab_size])
batch_out = np.zeros([length, vocab_size], dtype=np.uint8)
for i in range(length):
b_ = [char_to_index[c] for c in raw_text[text_pointers[i]:text_pointers[i] + time_steps + 1]]
batch_in[i, range(time_steps), b_[:-1]] = 1
batch_out[i, b_[-1]] = 1
return batch_size, vocab_size, time_steps, batch_in, batch_out
def main1(max_iter):
batch_size, vocab_size, time_steps, batch_in, batch_out = get_data()
print("Building model ...")
net = npdl.Model()
net.add(npdl.layers.SimpleRNN(n_out=200, n_in=vocab_size, return_sequence=True,
nb_batch=batch_size, nb_seq=time_steps))
net.add(npdl.layers.SimpleRNN(n_out=200, return_sequence=True))
net.add(npdl.layers.MeanPooling(pool_size=(time_steps, 1)))
net.add(npdl.layers.Flatten())
net.add(npdl.layers.Softmax(n_out=vocab_size))
net.compile(loss=npdl.objectives.SCCE(), optimizer=npdl.optimizers.SGD(lr=0.00001, clip=5))
print("Train model ...")
net.fit(batch_in, batch_out, max_iter=max_iter, batch_size=batch_size)
def main2(max_iter):
batch_size, vocab_size, time_steps, batch_in, batch_out = get_data()
print("Building model ...")
net = npdl.Model()
net.add(npdl.layers.SimpleRNN(n_out=200, n_in=vocab_size, return_sequence=True,
nb_batch=batch_size, nb_seq=time_steps))
net.add(npdl.layers.SimpleRNN(n_out=200, n_in=200))
net.add(npdl.layers.Softmax(n_out=vocab_size))
net.compile(loss=npdl.objectives.SCCE(), optimizer=npdl.optimizers.SGD(lr=0.00001, clip=5))
print("Train model ...")
net.fit(batch_in, batch_out, max_iter=max_iter, batch_size=batch_size)
if __name__ == '__main__':
main1(100)