|
| 1 | +#!/usr/bin/env python |
| 2 | +# ------------------------------------------------------------------------------------------------------% |
| 3 | +# Created by "Thieu" at 09:51, 16/07/2021 % |
| 4 | +# % |
| 5 | +# Email: nguyenthieu2102@gmail.com % |
| 6 | +# Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 % |
| 7 | +# Github: https://github.com/thieu1995 % |
| 8 | +# ------------------------------------------------------------------------------------------------------% |
| 9 | + |
| 10 | +from mealpy.evolutionary_based import GA, DE, FPA |
| 11 | +from mealpy.swarm_based import ABC, PSO, HHO, GWO, WOA, SpaSA, MFO, ALO, GOA, SalpSO, DO, FA, BeesA, ACOR, NMRA |
| 12 | +from mealpy.swarm_based import FireflyA, BA, FOA, SSO, SSA, EHO, JA, BSA, SHO, SRSR, MSA, BES, PFA, SFO, MRFO, HGS |
| 13 | +from mealpy.bio_based import BBO, IWO, SMA, EOA, SBO, VCS |
| 14 | +from mealpy.human_based import TLO, LCBO, ICA, CA, BRO, BSO, CHIO, FBIO, GSKA, QSA, SARO, SSDO |
| 15 | +from mealpy.physics_based import MVO, EO, SA, HGSO, ASO, EFO, NRO, TWO, WDO |
| 16 | +from mealpy.math_based import SCA, HC |
| 17 | +from mealpy.system_based import WCA, AEO, GCO |
| 18 | +from mealpy.dummy import BOA |
| 19 | +from mealpy.swarm_based import SLO |
| 20 | +from model.app.hybrid_cfnn import HybridCfnn |
| 21 | + |
| 22 | + |
| 23 | +## Evolutionary Group |
| 24 | + |
| 25 | +class GaCfnn(HybridCfnn): |
| 26 | + def __init__(self, mha_paras=None): |
| 27 | + super().__init__() |
| 28 | + self.epoch = mha_paras["epoch"] |
| 29 | + self.pop_size = mha_paras["pop_size"] |
| 30 | + self.pc = mha_paras["pc"] |
| 31 | + self.pm = mha_paras["pm"] |
| 32 | + self.filename = f"{self.epoch}-{self.pop_size}-{self.pc}-{self.pm}" |
| 33 | + |
| 34 | + # fit hybrid MLP network to training data |
| 35 | + def fit_model(self): |
| 36 | + self.opt = GA.BaseGA(obj_func=self.objective_function, lb=self.lb, ub=self.ub, verbose=self.verbose, |
| 37 | + epoch=self.epoch, pop_size=self.pop_size, pc=self.pc, pm=self.pm) |
| 38 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 39 | + |
| 40 | + |
| 41 | +class JadeCfnn(HybridCfnn): |
| 42 | + def __init__(self, mha_paras=None): |
| 43 | + super().__init__() |
| 44 | + self.epoch = mha_paras["epoch"] |
| 45 | + self.pop_size = mha_paras["pop_size"] |
| 46 | + self.miu_f = mha_paras["miu_f"] |
| 47 | + self.miu_cr = mha_paras["miu_cr"] |
| 48 | + self.pp = mha_paras["pp"] |
| 49 | + self.cc = mha_paras["cc"] |
| 50 | + self.filename = f"{self.epoch}-{self.pop_size}-{self.miu_f}-{self.miu_cr}-{self.pp}-{self.cc}" |
| 51 | + |
| 52 | + # fit hybrid MLP network to training data |
| 53 | + def fit_model(self): |
| 54 | + self.opt = DE.JADE(obj_func=self.objective_function, lb=self.lb, ub=self.ub, verbose=self.verbose, |
| 55 | + epoch=self.epoch, pop_size=self.pop_size, miu_f=self.miu_f, miu_cr=self.miu_cr, |
| 56 | + p=self.pp, c=self.cc) |
| 57 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 58 | + |
| 59 | + |
| 60 | +## Swarm Group |
| 61 | + |
| 62 | +class CLPsoCfnn(HybridCfnn): |
| 63 | + def __init__(self, mha_paras=None): |
| 64 | + super().__init__() |
| 65 | + self.epoch = mha_paras["epoch"] |
| 66 | + self.pop_size = mha_paras["pop_size"] |
| 67 | + self.c_local = mha_paras["c_local"] |
| 68 | + self.w_min = mha_paras["w_min"] |
| 69 | + self.w_max = mha_paras["w_max"] |
| 70 | + self.filename = f"{self.epoch}-{self.pop_size}-{self.c_local}-{self.w_min}-{self.w_max}" |
| 71 | + |
| 72 | + def fit_model(self): |
| 73 | + self.opt = PSO.CL_PSO(self.objective_function, self.lb, self.ub, self.verbose, |
| 74 | + self.epoch, self.pop_size, self.c_local, self.w_min, self.w_max) |
| 75 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 76 | + |
| 77 | + |
| 78 | +class SloCfnn(HybridCfnn): |
| 79 | + def __init__(self, mha_paras=None): |
| 80 | + super().__init__() |
| 81 | + self.epoch = mha_paras["epoch"] |
| 82 | + self.pop_size = mha_paras["pop_size"] |
| 83 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 84 | + |
| 85 | + def fit_model(self): |
| 86 | + self.opt = SLO.BaseSLO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 87 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 88 | + |
| 89 | + |
| 90 | +class IsloCfnn(HybridCfnn): |
| 91 | + def __init__(self, mha_paras=None): |
| 92 | + super().__init__() |
| 93 | + self.epoch = mha_paras["epoch"] |
| 94 | + self.pop_size = mha_paras["pop_size"] |
| 95 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 96 | + |
| 97 | + def fit_model(self): |
| 98 | + self.opt = SLO.ISLO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 99 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 100 | + |
| 101 | + |
| 102 | +class FpaCfnn(HybridCfnn): |
| 103 | + def __init__(self, mha_paras=None): |
| 104 | + super().__init__() |
| 105 | + self.epoch = mha_paras["epoch"] |
| 106 | + self.pop_size = mha_paras["pop_size"] |
| 107 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 108 | + |
| 109 | + def fit_model(self): |
| 110 | + self.opt = FPA.BaseFPA(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 111 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 112 | + |
| 113 | + |
| 114 | +class HhoCfnn(HybridCfnn): |
| 115 | + def __init__(self, mha_paras=None): |
| 116 | + super().__init__() |
| 117 | + self.epoch = mha_paras["epoch"] |
| 118 | + self.pop_size = mha_paras["pop_size"] |
| 119 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 120 | + |
| 121 | + def fit_model(self): |
| 122 | + self.opt = HHO.BaseHHO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 123 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 124 | + |
| 125 | + |
| 126 | +class HgsCfnn(HybridCfnn): |
| 127 | + def __init__(self, mha_paras=None): |
| 128 | + super().__init__() |
| 129 | + self.epoch = mha_paras["epoch"] |
| 130 | + self.pop_size = mha_paras["pop_size"] |
| 131 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 132 | + |
| 133 | + def fit_model(self): |
| 134 | + self.opt = HGS.OriginalHGS(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 135 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 136 | + |
| 137 | + |
| 138 | +class NroCfnn(HybridCfnn): |
| 139 | + def __init__(self, mha_paras=None): |
| 140 | + super().__init__() |
| 141 | + self.epoch = mha_paras["epoch"] |
| 142 | + self.pop_size = mha_paras["pop_size"] |
| 143 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 144 | + |
| 145 | + def fit_model(self): |
| 146 | + self.opt = NRO.BaseNRO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 147 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 148 | + |
| 149 | + |
| 150 | +class TloCfnn(HybridCfnn): |
| 151 | + def __init__(self, mha_paras=None): |
| 152 | + super().__init__() |
| 153 | + self.epoch = mha_paras["epoch"] |
| 154 | + self.pop_size = mha_paras["pop_size"] |
| 155 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 156 | + |
| 157 | + def fit_model(self): |
| 158 | + self.opt = TLO.BaseTLO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 159 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 160 | + |
| 161 | + |
| 162 | +class FbioCfnn(HybridCfnn): |
| 163 | + def __init__(self, mha_paras=None): |
| 164 | + super().__init__() |
| 165 | + self.epoch = mha_paras["epoch"] |
| 166 | + self.pop_size = mha_paras["pop_size"] |
| 167 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 168 | + |
| 169 | + def fit_model(self): |
| 170 | + self.opt = FBIO.BaseFBIO(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 171 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 172 | + |
| 173 | + |
| 174 | +class SmaCfnn(HybridCfnn): |
| 175 | + def __init__(self, mha_paras=None): |
| 176 | + super().__init__() |
| 177 | + self.epoch = mha_paras["epoch"] |
| 178 | + self.pop_size = mha_paras["pop_size"] |
| 179 | + self.filename = f"{self.epoch}-{self.pop_size}" |
| 180 | + |
| 181 | + def fit_model(self): |
| 182 | + self.opt = SMA.BaseSMA(self.objective_function, self.lb, self.ub, self.verbose, self.epoch, self.pop_size) |
| 183 | + self.solution, self.fitness, self.list_loss = self.opt.train() |
| 184 | + |
| 185 | +# Evo --> FPA |
| 186 | +# Swarm -> HHO, HGS |
| 187 | +# Physic-=> NRO, |
| 188 | +# Human --> TLO, FBIO, |
| 189 | +# Bio -> SMA |
0 commit comments