-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetecter.py
172 lines (144 loc) · 7.11 KB
/
detecter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from __future__ import print_function
import argparse
import os
import time
import torch
import torch.backends.cudnn as cudnn
import numpy as np
import skimage
#from dispnet import *
#from networks.dispnet_v2 import *
import torch.cuda as ct
from networks.DispNetCSRes import DispNetCSRes
from net_builder import SUPPORT_NETS, build_net
from losses.multiscaleloss import multiscaleloss
import torch.nn.functional as F
#from dataset import DispDataset, save_pfm, RandomRescale
from dataloader.SceneFlowLoader import DispDataset
from utils.preprocess import scale_disp, save_pfm
from utils.common import count_parameters
from torch.utils.data import DataLoader
from torchvision import transforms
import psutil
process = psutil.Process(os.getpid())
cudnn.benchmark = True
#input_transform = transforms.Compose([
# transforms.Normalize(mean=[0,0,0], std=[255,255,255]),
# # transforms.Normalize(mean=[0.411,0.432,0.45], std=[1,1,1])
# ])
#
#target_transform = transforms.Compose([
# transforms.Normalize(mean=[0],std=[1.0])
# ])
def detect(opt):
model = opt.model
result_path = opt.rp
file_list = opt.filelist
filepath = opt.filepath
if not os.path.exists(result_path):
os.makedirs(result_path)
devices = [int(item) for item in opt.devices.split(',')]
ngpu = len(devices)
#net = DispNetC(ngpu, True)
#net = DispNetCSRes(ngpu, False, True)
#net = DispNetCSResWithMono(ngpu, False, True, input_channel=3)
if opt.net == "psmnet" or opt.net == "ganet":
net = build_net(opt.net)(maxdisp=192)
elif opt.net == "dispnetc":
net = build_net(opt.net)(batchNorm=False, lastRelu=True, resBlock=False)
else:
net = build_net(opt.net)(batchNorm=False, lastRelu=True)
net = torch.nn.DataParallel(net, device_ids=devices).cuda()
model_data = torch.load(model)
print(model_data.keys())
if 'state_dict' in model_data.keys():
net.load_state_dict(model_data['state_dict'])
else:
net.load_state_dict(model_data)
num_of_parameters = count_parameters(net)
print('Model: %s, # of parameters: %d' % (opt.net, num_of_parameters))
net.eval()
batch_size = int(opt.batchSize)
test_dataset = DispDataset(txt_file=file_list, root_dir=filepath, phase='detect')
test_loader = DataLoader(test_dataset, batch_size = batch_size, \
shuffle = False, num_workers = 1, \
pin_memory = True)
s = time.time()
#high_res_EPE = multiscaleloss(scales=1, downscale=1, weights=(1), loss='L1', sparse=False)
avg_time = []
display = 100
warmup = 10
for i, sample_batched in enumerate(test_loader):
input = torch.cat((sample_batched['img_left'], sample_batched['img_right']), 1)
# print('input Shape: {}'.format(input.size()))
num_of_samples = input.size(0)
target = sample_batched['gt_disp']
#print('disp Shape: {}'.format(target.size()))
#original_size = (1, target.size()[2], target.size()[3])
target = target.cuda()
input = input.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
if i > warmup:
ss = time.time()
if opt.net == "psmnet" or opt.net == "ganet":
output = net(input_var)
elif opt.net == "dispnetc":
output = net(input_var)[0]
else:
output = net(input_var)[-1]
if i > warmup:
avg_time.append((time.time() - ss))
if (i - warmup) % display == 0:
print('Average inference time: %f' % np.mean(avg_time))
mbytes = 1024.*1024
print('GPU memory usage memory_allocated: %d MBytes, max_memory_allocated: %d MBytes, memory_cached: %d MBytes, max_memory_cached: %d MBytes, CPU memory usage: %d MBytes' % \
(ct.memory_allocated()/mbytes, ct.max_memory_allocated()/mbytes, ct.memory_cached()/mbytes, ct.max_memory_cached()/mbytes, process.memory_info().rss/mbytes))
avg_time = []
# output = net(input_var)[1]
output[output > 192] = 0
output = scale_disp(output, (output.size()[0], 540, 960))
for j in range(num_of_samples):
# scale back depth
np_depth = output[j][0].data.cpu().numpy()
gt_depth = target_var[j, 0, :, :].data.cpu().numpy()
#print(np.min(np_depth), np.max(np_depth))
#cuda_depth = torch.from_numpy(np_depth).cuda()
#cuda_depth = torch.autograd.Variable(cuda_depth, volatile=True)
# flow2_EPE = high_res_EPE(output[j], target_var[j]) * 1.0
#flow2_EPE = high_res_EPE(cuda_depth, target_var[j]) * 1.0
#print('Shape: {}'.format(output[j].size()))
print('Batch[{}]: {}, average disp: {}'.format(i, j, np.mean(np_depth)))
#print('Batch[{}]: {}, Flow2_EPE: {}'.format(i, sample_batched['img_names'][0][j], flow2_EPE.data.cpu().numpy()))
name_items = sample_batched['img_names'][0][j].split('/')
#save_name = '_'.join(name_items).replace('.png', '.pfm')# for girl02 dataset
#save_name = 'predict_{}_{}_{}.pfm'.format(name_items[-4], name_items[-3], name_items[-1].split('.')[0])
#save_name = 'predict_{}_{}.pfm'.format(name_items[-1].split('.')[0], name_items[-1].split('.')[1])
#save_name = 'predict_{}.pfm'.format(name_items[-1])
#img = np.flip(np_depth[0], axis=0)
save_name = '_'.join(name_items)# for girl02 dataset
img = np_depth
print('Name: {}'.format(save_name))
print('')
#save_pfm('{}/{}'.format(result_path, save_name), img)
skimage.io.imsave(os.path.join(result_path, save_name),(img*256).astype('uint16'))
save_name = '_'.join(name_items).replace(".png", "_gt.png")# for girl02 dataset
img = gt_depth
print('Name: {}'.format(save_name))
print('')
#save_pfm('{}/{}'.format(result_path, save_name), img)
skimage.io.imsave(os.path.join(result_path, save_name),(img*256).astype('uint16'))
print('Evaluation time used: {}'.format(time.time()-s))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--net', type=str, help='indicate the name of net', default='dispnetcres', choices=SUPPORT_NETS)
parser.add_argument('--model', type=str, help='model to load', default='best.pth')
parser.add_argument('--filelist', type=str, help='file list', default='FlyingThings3D_release_TEST.list')
parser.add_argument('--filepath', type=str, help='file path', default='./data')
parser.add_argument('--devices', type=str, help='devices', default='0')
parser.add_argument('--display', type=int, help='Num of samples to print', default=10)
parser.add_argument('--rp', type=str, help='result path', default='./result')
parser.add_argument('--flowDiv', type=float, help='flow division', default='1.0')
parser.add_argument('--batchSize', type=int, help='mini batch size', default=1)
opt = parser.parse_args()
detect(opt)