-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation-worker.js
220 lines (198 loc) · 7.17 KB
/
simulation-worker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
importScripts('simulation.js');
function run_mc(event) {
var sim = new Simulation();
var params = sim.parse(event.data);
if (params.errors.length > 0) {
postMessage({action:'error', errors: params.errors});
return;
}
var x = [], v = [], p = [], b = [];
var trajectories = [];
var samples = sim.getSamples(params);
for (var i = 0; i < params.n_samp; i++) {
params.w_x = samples.w_x[i];
params.t_open = samples.t_open[i];
params.C_d = samples.C_d[i];
params.m = samples.m[i];
params.v_x = samples.v_x[i];
params.save_trajectory = (i < 25);
var result = sim.run(params);
if (params.save_trajectory) {
if (i == 1)
console.log(result)
var traj_x = [];
var traj_y = [];
var traj_open_x = [];
var traj_open_y = [];
var open_x, open_y = -1;
var full_x, full_y = -1;
var land_x, land_y = -1;
var torn_x, torn_y = -1;
var success = 0;
for (var j = 0; j < result.length; j++) {
if (result[j].p == 0) {
traj_x.push(result[j].x);
traj_y.push(result[j].y);
} else {
if (traj_open_x.length == 0) {
traj_x.push(result[j].x);
traj_y.push(result[j].y);
}
traj_open_x.push(result[j].x);
traj_open_y.push(result[j].y);
}
if (result[j].p > 0 && open_y == -1) {
open_x = result[j].x;
open_y = result[j].y;
}
if (result[j].p == 1 && full_y == -1) {
full_x = result[j].x;
full_y = result[j].y;
}
if (result[j].b > 0 && torn_y == -1) {
torn_x = result[j].x;
torn_y = result[j].y;
}
}
var last = result[result.length - 1];
var land_x = last.x, land_y = last.y;
var land_v = Math.sqrt(last.v_x * last.v_x + last.v_y * last.v_y);
if (land_v <= params.v_max)
success = 1;
trajectories.push({
before:{x: traj_x, y: traj_y},
after:{x:traj_open_x, y:traj_open_y},
open:{x:open_x,y:open_y},
full:{x:full_x,y:full_y},
torn:{x:torn_x,y:torn_y},
land:{x:land_x,y:land_y,v:land_v},
success: success
});
}
var last = result[result.length - 1];
x.push(last.x);
v.push(Math.sqrt(last.v_x * last.v_x + last.v_y * last.v_y));
p.push(last.p);
b.push(last.b);
}
postMessage({action:'run_mc', x: x, v: v, p: p, b:b, params: params, samples: samples, trajectories: trajectories});
}
function run_sa(event) {
var dot = function (a, b) {
var prod = 0;
for (var i = 0; i < a.length; i++)
prod += a[i] * b[i];
return prod;
};
var compute_sensitivities = function(params) {
var N = params.n_samp;
A_samps = sim.getSamples(params);
var keys = Object.keys(A_samps);
B_samps = sim.getSamples(params);
var A = new Float64Array(keys.length * N);
var B = new Float64Array(keys.length * N);
keys.forEach(function(key, j) {
var A_samp = A_samps[key];
var B_samp = B_samps[key];
for (var i = 0; i < N; i++) {
A[i * keys.length + j] = A_samp[i];
B[i * keys.length + j] = B_samp[i];
}
});
var y_A = {x: new Float64Array(N), v: new Float64Array(N)};
var y_B = {x: new Float64Array(N), v: new Float64Array(N)};
var y_C = {x: new Float64Array(N), v: new Float64Array(N)};
for (var i = 0; i < N; i++) {
for (var j = 0; j < keys.length; j++) {
params[keys[j]] = A[i * keys.length + j];
}
var trajectory = sim.run(params);
y_A.x[i] = trajectory[trajectory.length-1].x;
y_A.v[i] = Math.sqrt(Math.pow(trajectory[trajectory.length-1].v_x,2)+Math.pow(trajectory[trajectory.length-1].v_y,2));
for (var j = 0; j < keys.length; j++) {
params[keys[j]] = B[i * keys.length + j];
}
var trajectory = sim.run(params);
y_B.x[i] = trajectory[trajectory.length-1].x;
y_B.v[i] = Math.sqrt(Math.pow(trajectory[trajectory.length-1].v_x,2)+Math.pow(trajectory[trajectory.length-1].v_y,2));
}
var f0 = {x:0, v:0};
for (var i = 0; i < N; i++) {
f0.x += y_A.x[i];
f0.v += y_A.v[i];
}
f0.x = f0.x / N;
f0.v = f0.v / N;
// main and total effect sensitivities
var S = {x: new Float64Array(keys.length), v: new Float64Array(keys.length)};
var ST = {x: new Float64Array(keys.length), v: new Float64Array(keys.length)};
function mean(arr) {
var sum = 0;
for (var i = 0; i < arr.length; i++) {
sum += arr[i];
}
return sum / arr.length;
};
function variance(arr) {
var sum = 0;
var mu = mean(arr);
for (var i = 0; i < arr.length; i++) {
sum += (arr[i] - mu) * (arr[i] - mu);
}
return sum / (arr.length - 1);
};
var muA = {x:mean(y_A.x), v:mean(y_A.v)};
var muB = {x:mean(y_B.x), v:mean(y_B.v)};
var varA = {x:variance(y_A.x), v:variance(y_A.v)};
var varB = {x:variance(y_B.x), v:variance(y_B.v)};
for (var k = 0; k < keys.length; k++) {
var C = Float64Array.from(B);
for (var i = 0; i < N; i++) {
C[i * keys.length + k] = A[i * keys.length + k];
}
for (var i = 0; i < N; i++) {
for (var j = 0; j < keys.length; j++) {
params[keys[j]] = C[i * keys.length + j];
}
var trajectory = sim.run(params);
y_C.x[i] = trajectory[trajectory.length-1].x;
y_C.v[i] = Math.sqrt(Math.pow(trajectory[trajectory.length-1].v_x,2)+Math.pow(trajectory[trajectory.length-1].v_y,2));
}
console.log(k, keys[k]);
S.x[k] = (2 * N / (2 * N - 1) * (dot(y_A.x, y_C.x) / N - Math.pow(muA.x + muB.x, 2) / 4 + (varA.x + varB.x) / (4 * N))) / (varA.x);
var sumsq = 0; for (var i = 0; i < N; i++) { sumsq += Math.pow(y_B.x[i] - y_C.x[i], 2); }
ST.x[k] = 1 / (2*N) * sumsq / varA.x;
S.v[k] = (2 * N / (2 * N - 1) * (dot(y_A.v, y_C.v) / N - Math.pow(muA.v + muB.v, 2) / 4 + (varA.v + varB.v) / (4 * N))) / (varA.v);
var sumsq = 0; for (var i = 0; i < N; i++) { sumsq += Math.pow(y_B.v[i] - y_C.v[i], 2); }
ST.v[k] = 1 / (2*N) * sumsq / varA.v;
/*
S.x[k] = (dot(y_A.x, y_C.x) / N - f0.x * f0.x) / (dot(y_A.x, y_A.x) / N - f0.x * f0.x);
ST.x[k] = 1 - (dot(y_B.x, y_C.x) / N - f0.x * f0.x) / (dot(y_A.x, y_A.x) / N - f0.x * f0.x);
S.v[k] = (dot(y_A.v, y_C.v) / N - f0.v * f0.v) / (dot(y_A.v, y_A.v) / N - f0.v * f0.v);
ST.v[k] = 1 - (dot(y_B.v, y_C.v) / N - f0.v * f0.v) / (dot(y_A.v, y_A.v) / N - f0.v * f0.v);
*/
}
return { 'keys': keys, 'main_effect_sensitivites': S, 'total_effect_sensitivites': ST };
}
var sim = new Simulation();
var params = sim.parse(event.data);
if (params.errors.length > 0) {
postMessage({action:'error', errors: params.errors});
return;
}
var result = compute_sensitivities(params)
result.action = 'run_sa';
postMessage(result);
}
onmessage = function(event) {
if (event.data.action == 'run_mc') {
var t0 = performance.now();
run_mc(event);
console.log("run_mc() took " + (performance.now() - t0) + " ms.");
}
if (event.data.action == 'run_sa') {
var t0 = performance.now();
run_sa(event);
console.log("run_sa() took " + (performance.now() - t0) + " ms.");
}
};