-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathagent.py
319 lines (248 loc) · 11.6 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from itertools import count
import random
import pickle
import numpy as np
import torch
import torch.optim as optim
from game import Game
from experience_replay import experienceReplay
from dqn import DQN
class Agent():
def __init__(self, game_name, device='cpu', chkpnt_name=None, pretrained_name=None, verbosity=0):
#Set hyperparameters
self.discount = 0.99
self.learning_rate = 0.00001
self.batch_size = 32
self.eps_start = 1
self.eps_end = 0.1
self.eps_decay = 1000000 # 1000000
self.primary_update = 4
self.target_update = 10000
self.num_steps = 50000000
self.max_episodes = 10000 # 10000
self.episodes_per_chkpnt = 50
self.evaluation_steps = 10000 # 1000000
#Model Checkpointing
if chkpnt_name == None:
chkpnt_name = game_name + '_' + str(self.max_episodes)
self.chkpnt_path = 'models/' + chkpnt_name
#Metrics
self.metrics = {
'rewards': [],
'losses': [],
'steps': [],
'cum_steps': [],
'evaluation': []
}
#Device
self.device = torch.device(device)
print('Using device: ', device)
#Game
self.game = Game(game_name)
self.num_actions = self.game.get_n_actions()
#Experience Replay Memory
self.memory_size = 25000 # 10000000
self.memory = experienceReplay(self.memory_size)
#Double Deep Q Network
self.primary_network = DQN(self.num_actions).to(self.device).float()
self.target_network = DQN(self.num_actions).to(self.device).float()
self.target_network.load_state_dict(self.primary_network.state_dict())
self.target_network.eval()
#Loss function
self.loss_func = torch.nn.MSELoss()
#Optimiser
self.momentum = 0.95
self.optimizer = optim.RMSprop(self.primary_network.parameters(),
lr=self.learning_rate, alpha=0.99, eps=1e-08,
weight_decay=0, momentum=self.momentum
)
#clear gradients
self.optimizer.zero_grad()
#Open pretrained model
if pretrained_name != None:
with open('models/' + pretrained_name + '.metrics', 'rb') as metrics_file:
self.metrics = pickle.load(metrics_file)
self.primary_network.load_state_dict(torch.load('models/' + pretrained_name + '.pth'))
self.primary_network.train()
self.optimizer.load_state_dict(torch.load('models/' + pretrained_name + '.opt'))
with torch.no_grad():
self.target_network.load_state_dict(self.primary_network.state_dict())
self.target_network.eval()
print('Using pretrained model: ' + pretrained_name)
#Verbosity
# 0 - No info
# 1 - Prints metrics per episode
# 2 - Prints training batch information (BLOCKS EXECUTION)
# 3 - Prints model weights and saves state plot (BLOCKS EXECUTION)
self.verbosity = verbosity
def sanity_check_screen(self):
#Returns the opening screen of game for sanity checks
#The opening screen should be 84x84 grayscaled image
self.game.reset_env()
state = self.game.get_screen()
print('Dimension of screen: ', state.shape)
return state
def select_action(self, steps, state):
"""
Selects next action to perform using greedy policy. Target network is used to
estimate q-values.
Arguments:
steps - Number of steps performed till now
state - Current state of atari game, contains last 4 frames.
"""
#linear decay of epsilon value
epsilon = self.eps_start + (self.eps_end - self.eps_start) * (min(steps, self.eps_decay) / self.eps_decay)
if random.random() < epsilon:
#exploration
return np.random.choice(np.arange(self.num_actions))
else:
#exploitation
#use primary_network to estimate q-values of actions
state = torch.as_tensor(state, dtype=torch.float).to(self.device) / 255.
return torch.argmax(self.primary_network(state.unsqueeze(0))).detach().cpu().numpy()
def evaluate(self, visualise=False):
total_reward = 0
done = False
self.game.reset_env()
if visualise:
self.game.env.render()
import time
time.sleep(0.03)
while not done:
if visualise:
self.game.env.render()
time.sleep(0.03)
state = self.game.get_input()
action = self.select_action(self.eps_decay, state)
reward, done = self.game.step(action)
total_reward += reward
self.game.env.close()
return total_reward
def batch_train(self):
"""
Performs batch training on the network. Implements Double Q learning on network.
It evaluates greedy policy using primary network but its value is
estimated using target network.
Loss funtion used is Mean Squared Error.
Uses RMSprop for gradient based optimisation.
"""
if(self.memory.number_of_experiences() < self.batch_size):
#Not enough experiences for batch training
return
#Sample batch from replay memory
batch_data = self.memory.selectBatch(self.batch_size)
batch_states, batch_actions, batch_rewards, batch_next_states, done = list(zip(*batch_data))
#Convert the batch information into PyTorch tensors
batch_states = torch.as_tensor(np.stack(batch_states, axis=0), dtype=torch.float).to(self.device) / 255.
batch_next_states = torch.as_tensor(np.stack(batch_next_states, axis=0), dtype=torch.float).to(self.device) / 255.
batch_actions = torch.as_tensor(np.stack(batch_actions)).to(self.device)
batch_rewards = torch.tensor(batch_rewards, dtype=torch.float).to(self.device)
not_done = (~torch.tensor(done).unsqueeze(1)).to(self.device)
#Prediction
Q_t_values = self.primary_network(batch_states).gather(1, batch_actions.unsqueeze(1)).squeeze()
#Ground-truth
next_Q_t_primary_values = self.primary_network(batch_next_states)
next_Q_t_target_values = not_done * self.target_network(batch_next_states)
next_Q_t_values_max = next_Q_t_target_values.gather(1, torch.argmax(next_Q_t_primary_values, dim=1).unsqueeze(1)).detach().squeeze()
#Double Q-Learning
expected_Q_values = (batch_rewards + (self.discount * next_Q_t_values_max))
#Calulating loss
loss = self.loss_func(Q_t_values, expected_Q_values)
# DEBUG
if self.verbosity >= 2 and loss.detach().item() < 0.1:
print('BATCH_ACTION: ', batch_actions)
print('BATCH_REWARD: ', batch_rewards)
print('LOSS: ', loss.detach().item())
print('PRIMARY: ', self.primary_network(batch_states).detach())
print('Q: ', Q_t_values)
print('T: ', expected_Q_values)
if self.verbosity >= 3:
import matplotlib.pyplot as plt
plt.imshow(batch_states[0][0].cpu().numpy())
plt.plot()
plt.savefig('tmp_img.png')
for name, param in self.primary_network.named_parameters():
if param.requires_grad:
print(name, param.data)
print('\n')
input()
# DEBUG
#Clear gradients from last backward pass
self.optimizer.zero_grad()
#Run backward pass and calculate gradients
loss.backward()
# #Clip loss gradient between -1 and 1
# for param in self.primary_network.parameters():
# param.grad.data.clamp_(-1, 1)
#Update weights from calculated gradients
self.optimizer.step()
return loss.detach().item()
def train(self):
def save_model():
print('Saving model and metrics ...')
torch.save(self.primary_network.state_dict(), self.chkpnt_path + '.pth')
torch.save(self.optimizer.state_dict(), self.chkpnt_path + '.opt')
with open(self.chkpnt_path + '.metrics', 'wb') as metrics_file:
pickle.dump(self.metrics, metrics_file)
steps = 0
for i in range(self.max_episodes):
if self.verbosity >= 1:
print('\n', '-'*40)
print('Episode ', i)
total_reward = 0
self.game.reset_env()
state = self.game.get_input()
for steps_delta in count():
#Update counters
steps += 1
#Select action using greedy policy
action = self.select_action(steps, state)
reward, done = self.game.step(action)
total_reward += reward
if done:
#Reset game screen if terminal state reached
self.game.reset_env()
next_state = self.game.get_input()
#Store experiences in replay memory for batch training
self.memory.storeExperience(state, action, reward, next_state, done)
#Train primary network every k steps
if steps % self.primary_update == 0:
loss = self.batch_train()
#next state assigned to current state
state = next_state
if steps % self.target_update == 0:
#Update the target_network
with torch.no_grad():
self.target_network.load_state_dict(self.primary_network.state_dict())
self.target_network.eval()
if done:
if self.verbosity >= 1:
print('Steps taken: ', steps_delta)
print('Cumulative Steps taken: ', steps)
print('Loss: ', loss)
print('Reward: ', total_reward)
#Record the metrics after an episode
self.metrics['steps'].append(steps_delta)
self.metrics['cum_steps'].append(steps)
self.metrics['losses'].append(loss)
self.metrics['rewards'].append(total_reward)
break
if steps == self.num_steps:
print("Training Done\n")
break
#Model checkpointing
if i % self.episodes_per_chkpnt == self.episodes_per_chkpnt-1:
save_model()
#Model evaluation
if steps % self.evaluation_steps == 0:
eval_reward = self.evaluate()
if self.verbosity >= 1:
print('Evaluation reward: ', eval_reward)
self.metrics['evaluation'].append((steps, eval_reward))
#Maximum training steps reached
if steps == self.num_steps:
save_model()
return self.metrics
#Save final trained model
save_model()
return self.metrics