forked from scikit-learn-contrib/imbalanced-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_validation.py
368 lines (312 loc) · 12.8 KB
/
test_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
"""Test for the validation helper"""
# Authors: Guillaume Lemaitre <[email protected]>
# Christos Aridas
# License: MIT
from collections import Counter
from collections import OrderedDict
import pytest
import numpy as np
from sklearn.neighbors._base import KNeighborsMixin
from sklearn.neighbors import NearestNeighbors
from sklearn.utils._testing import assert_array_equal
from imblearn.utils.testing import warns
from imblearn.utils import check_neighbors_object
from imblearn.utils import check_sampling_strategy
from imblearn.utils import check_target_type
from imblearn.utils._validation import ArraysTransformer
multiclass_target = np.array([1] * 50 + [2] * 100 + [3] * 25)
binary_target = np.array([1] * 25 + [0] * 100)
def test_check_neighbors_object():
name = "n_neighbors"
n_neighbors = 1
estimator = check_neighbors_object(name, n_neighbors)
assert issubclass(type(estimator), KNeighborsMixin)
assert estimator.n_neighbors == 1
estimator = check_neighbors_object(name, n_neighbors, 1)
assert issubclass(type(estimator), KNeighborsMixin)
assert estimator.n_neighbors == 2
estimator = NearestNeighbors(n_neighbors)
estimator_cloned = check_neighbors_object(name, estimator)
assert estimator.n_neighbors == estimator_cloned.n_neighbors
n_neighbors = "rnd"
with pytest.raises(ValueError, match="has to be one of"):
check_neighbors_object(name, n_neighbors)
@pytest.mark.parametrize(
"target, output_target",
[
(np.array([0, 1, 1]), np.array([0, 1, 1])),
(np.array([0, 1, 2]), np.array([0, 1, 2])),
(np.array([[0, 1], [1, 0]]), np.array([1, 0])),
],
)
def test_check_target_type(target, output_target):
converted_target = check_target_type(target.astype(int))
assert_array_equal(converted_target, output_target.astype(int))
@pytest.mark.parametrize(
"target, output_target, is_ova",
[
(np.array([0, 1, 1]), np.array([0, 1, 1]), False),
(np.array([0, 1, 2]), np.array([0, 1, 2]), False),
(np.array([[0, 1], [1, 0]]), np.array([1, 0]), True),
],
)
def test_check_target_type_ova(target, output_target, is_ova):
converted_target, binarize_target = check_target_type(
target.astype(int), indicate_one_vs_all=True
)
assert_array_equal(converted_target, output_target.astype(int))
assert binarize_target == is_ova
def test_check_sampling_strategy_warning():
msg = "dict for cleaning methods is not supported"
with pytest.raises(ValueError, match=msg):
check_sampling_strategy(
{1: 0, 2: 0, 3: 0}, multiclass_target, "clean-sampling"
)
@pytest.mark.parametrize(
"ratio, y, type, err_msg",
[
(
0.5,
binary_target,
"clean-sampling",
"'clean-sampling' methods do let the user specify the sampling ratio", # noqa
),
(
0.1,
np.array([0] * 10 + [1] * 20),
"over-sampling",
"remove samples from the minority class while trying to generate new", # noqa
),
(
0.1,
np.array([0] * 10 + [1] * 20),
"under-sampling",
"generate new sample in the majority class while trying to remove",
),
],
)
def test_check_sampling_strategy_float_error(ratio, y, type, err_msg):
with pytest.raises(ValueError, match=err_msg):
check_sampling_strategy(ratio, y, type)
def test_check_sampling_strategy_error():
with pytest.raises(ValueError, match="'sampling_type' should be one of"):
check_sampling_strategy("auto", np.array([1, 2, 3]), "rnd")
error_regex = "The target 'y' needs to have more than 1 class."
with pytest.raises(ValueError, match=error_regex):
check_sampling_strategy("auto", np.ones((10,)), "over-sampling")
error_regex = "When 'sampling_strategy' is a string, it needs to be one of"
with pytest.raises(ValueError, match=error_regex):
check_sampling_strategy("rnd", np.array([1, 2, 3]), "over-sampling")
@pytest.mark.parametrize(
"sampling_strategy, sampling_type, err_msg",
[
("majority", "over-sampling", "over-sampler"),
("minority", "under-sampling", "under-sampler"),
],
)
def test_check_sampling_strategy_error_wrong_string(
sampling_strategy, sampling_type, err_msg
):
with pytest.raises(
ValueError,
match=(
"'{}' cannot be used with {}".format(sampling_strategy, err_msg)
),
):
check_sampling_strategy(
sampling_strategy, np.array([1, 2, 3]), sampling_type
)
@pytest.mark.parametrize(
"sampling_strategy, sampling_method",
[
({10: 10}, "under-sampling"),
({10: 10}, "over-sampling"),
([10], "clean-sampling"),
],
)
def test_sampling_strategy_class_target_unknown(
sampling_strategy, sampling_method
):
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
with pytest.raises(ValueError, match="are not present in the data."):
check_sampling_strategy(sampling_strategy, y, sampling_method)
def test_sampling_strategy_dict_error():
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
sampling_strategy = {1: -100, 2: 50, 3: 25}
with pytest.raises(ValueError, match="in a class cannot be negative."):
check_sampling_strategy(sampling_strategy, y, "under-sampling")
sampling_strategy = {1: 45, 2: 100, 3: 70}
error_regex = (
"With over-sampling methods, the number of samples in a"
" class should be greater or equal to the original number"
" of samples. Originally, there is 50 samples and 45"
" samples are asked."
)
with pytest.raises(ValueError, match=error_regex):
check_sampling_strategy(sampling_strategy, y, "over-sampling")
error_regex = (
"With under-sampling methods, the number of samples in a"
" class should be less or equal to the original number of"
" samples. Originally, there is 25 samples and 70 samples"
" are asked."
)
with pytest.raises(ValueError, match=error_regex):
check_sampling_strategy(sampling_strategy, y, "under-sampling")
@pytest.mark.parametrize("sampling_strategy", [-10, 10])
def test_sampling_strategy_float_error_not_in_range(sampling_strategy):
y = np.array([1] * 50 + [2] * 100)
with pytest.raises(ValueError, match="it should be in the range"):
check_sampling_strategy(sampling_strategy, y, "under-sampling")
def test_sampling_strategy_float_error_not_binary():
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
with pytest.raises(ValueError, match="the type of target is binary"):
sampling_strategy = 0.5
check_sampling_strategy(sampling_strategy, y, "under-sampling")
@pytest.mark.parametrize(
"sampling_method", ["over-sampling", "under-sampling"]
)
def test_sampling_strategy_list_error_not_clean_sampling(sampling_method):
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
with pytest.raises(ValueError, match="cannot be a list for samplers"):
sampling_strategy = [1, 2, 3]
check_sampling_strategy(sampling_strategy, y, sampling_method)
def _sampling_strategy_func(y):
# this function could create an equal number of samples
target_stats = Counter(y)
n_samples = max(target_stats.values())
return {key: int(n_samples) for key in target_stats.keys()}
@pytest.mark.parametrize(
"sampling_strategy, sampling_type, expected_sampling_strategy, target",
[
("auto", "under-sampling", {1: 25, 2: 25}, multiclass_target),
("auto", "clean-sampling", {1: 25, 2: 25}, multiclass_target),
("auto", "over-sampling", {1: 50, 3: 75}, multiclass_target),
("all", "over-sampling", {1: 50, 2: 0, 3: 75}, multiclass_target),
("all", "under-sampling", {1: 25, 2: 25, 3: 25}, multiclass_target),
("all", "clean-sampling", {1: 25, 2: 25, 3: 25}, multiclass_target),
("majority", "under-sampling", {2: 25}, multiclass_target),
("majority", "clean-sampling", {2: 25}, multiclass_target),
("minority", "over-sampling", {3: 75}, multiclass_target),
("not minority", "over-sampling", {1: 50, 2: 0}, multiclass_target),
("not minority", "under-sampling", {1: 25, 2: 25}, multiclass_target),
("not minority", "clean-sampling", {1: 25, 2: 25}, multiclass_target),
("not majority", "over-sampling", {1: 50, 3: 75}, multiclass_target),
("not majority", "under-sampling", {1: 25, 3: 25}, multiclass_target),
("not majority", "clean-sampling", {1: 25, 3: 25}, multiclass_target),
(
{1: 70, 2: 100, 3: 70},
"over-sampling",
{1: 20, 2: 0, 3: 45},
multiclass_target,
),
(
{1: 30, 2: 45, 3: 25},
"under-sampling",
{1: 30, 2: 45, 3: 25},
multiclass_target,
),
([1], "clean-sampling", {1: 25}, multiclass_target),
(
_sampling_strategy_func,
"over-sampling",
{1: 50, 2: 0, 3: 75},
multiclass_target,
),
(0.5, "over-sampling", {1: 25}, binary_target),
(0.5, "under-sampling", {0: 50}, binary_target),
],
)
def test_check_sampling_strategy(
sampling_strategy, sampling_type, expected_sampling_strategy, target
):
sampling_strategy_ = check_sampling_strategy(
sampling_strategy, target, sampling_type
)
assert sampling_strategy_ == expected_sampling_strategy
def test_sampling_strategy_dict_over_sampling():
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
sampling_strategy = {1: 70, 2: 140, 3: 70}
expected_msg = (
r"After over-sampling, the number of samples \(140\) in"
r" class 2 will be larger than the number of samples in"
r" the majority class \(class #2 -> 100\)"
)
with warns(UserWarning, expected_msg):
check_sampling_strategy(sampling_strategy, y, "over-sampling")
def test_sampling_strategy_callable_args():
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
multiplier = {1: 1.5, 2: 1, 3: 3}
def sampling_strategy_func(y, multiplier):
"""samples such that each class will be affected by the multiplier."""
target_stats = Counter(y)
return {
key: int(values * multiplier[key])
for key, values in target_stats.items()
}
sampling_strategy_ = check_sampling_strategy(
sampling_strategy_func, y, "over-sampling", multiplier=multiplier
)
assert sampling_strategy_ == {1: 25, 2: 0, 3: 50}
@pytest.mark.parametrize(
"sampling_strategy, sampling_type, expected_result",
[
(
{3: 25, 1: 25, 2: 25},
"under-sampling",
OrderedDict({1: 25, 2: 25, 3: 25}),
),
(
{3: 100, 1: 100, 2: 100},
"over-sampling",
OrderedDict({1: 50, 2: 0, 3: 75}),
),
],
)
def test_sampling_strategy_check_order(
sampling_strategy, sampling_type, expected_result
):
# We pass on purpose a non sorted dictionary and check that the resulting
# dictionary is sorted. Refer to issue #428.
y = np.array([1] * 50 + [2] * 100 + [3] * 25)
sampling_strategy_ = check_sampling_strategy(
sampling_strategy, y, sampling_type
)
assert sampling_strategy_ == expected_result
def test_arrays_transformer_plain_list():
X = np.array([[0, 0], [1, 1]])
y = np.array([[0, 0], [1, 1]])
arrays_transformer = ArraysTransformer(X.tolist(), y.tolist())
X_res, y_res = arrays_transformer.transform(X, y)
assert isinstance(X_res, list)
assert isinstance(y_res, list)
def test_arrays_transformer_numpy():
X = np.array([[0, 0], [1, 1]])
y = np.array([[0, 0], [1, 1]])
arrays_transformer = ArraysTransformer(X, y)
X_res, y_res = arrays_transformer.transform(X, y)
assert isinstance(X_res, np.ndarray)
assert isinstance(y_res, np.ndarray)
def test_arrays_transformer_pandas():
pd = pytest.importorskip("pandas")
X = np.array([[0, 0], [1, 1]])
y = np.array([0, 1])
X_df = pd.DataFrame(X, columns=["a", "b"])
X_df = X_df.astype(int)
y_df = pd.DataFrame(y, columns=["target", ])
y_df = y_df.astype(int)
y_s = pd.Series(y, name="target", dtype=int)
# DataFrame and DataFrame case
arrays_transformer = ArraysTransformer(X_df, y_df)
X_res, y_res = arrays_transformer.transform(X, y)
assert isinstance(X_res, pd.DataFrame)
assert_array_equal(X_res.columns, X_df.columns)
assert_array_equal(X_res.dtypes, X_df.dtypes)
assert isinstance(y_res, pd.DataFrame)
assert_array_equal(y_res.columns, y_df.columns)
assert_array_equal(y_res.dtypes, y_df.dtypes)
# DataFrames and Series case
arrays_transformer = ArraysTransformer(X_df, y_s)
_, y_res = arrays_transformer.transform(X, y)
assert isinstance(y_res, pd.Series)
assert_array_equal(y_res.name, y_s.name)
assert_array_equal(y_res.dtype, y_s.dtype)