This repository has been archived by the owner on Nov 27, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
146 lines (103 loc) · 5.13 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import requests
import datetime
import json
import sys
from pyspark.sql.types import StructField, StringType, DoubleType, StructType, DateType
from pyspark.sql import SparkSession
import time
def clean_data(data):
if data == "NULL":
data = 0
#no data should be less than 0.
elif data < 0:
data = 0
return float(data)
def string_to_date(date):
date_time_obj = datetime.datetime.strptime(date, '%d-%m-%Y')
return date_time_obj.date()
def request_data(type = 'cumulative'):
today = datetime.date.today()
year_before_today = today - datetime.timedelta(days=365)
year_before_today = year_before_today.strftime("%d-%m-%Y")
yesterday = today - datetime.timedelta(days=1)
year_before_yesterday = yesterday - datetime.timedelta(days=365)
year_before_yesterday = year_before_yesterday.strftime(("%d-%m-%Y"))
yesterday = yesterday.strftime("%d-%m-%Y")
today = today.strftime("%d-%m-%Y")
if type == 'cumulative':
url_today = f'https://api.opencovid.ca/summary?stat=cases&date={today}&version="true"'
url_yesterday = f'https://api.opencovid.ca/summary?stat=cases&date={yesterday}&version="true"'
elif type == 'time_series':
url_today = f'https://api.opencovid.ca/timeseries?stat=cases&loc=prov&after={year_before_today}&before={today}'
url_yesterday = f'https://api.opencovid.ca/timeseries?stat=cases&loc=prov&after={year_before_yesterday}&before={yesterday}'
response = requests.get(url_today)
# Make sure nothing is crashing
if response.status_code != 200:
if response.status_code == 404:
print('Data not found')
return None
else:
raise Exception("API failed - {}".format(response.text))
# Check if today's record has already been updated
if len(response.json()) <= 1:
print(f"Picking up results from {yesterday} as results of {today} are not updated yet.")
response = requests.get(url_yesterday)
return response
def data_to_df(data_type = 'cumulative', session=None):
response = request_data(data_type)
province_total = response.json()
province_total_data = []
if data_type == 'cumulative':
for record in province_total['summary']:
province_data = {}
province_data['province'] = record['province']
province_data['active_cases'] = clean_data(record['active_cases'])
province_data['cumulative_cases'] = clean_data(record['cumulative_cases'])
province_data['cumulative_tested'] = clean_data(record['cumulative_testing'])
province_data['cumulative_deaths'] = clean_data(record['cumulative_deaths'])
province_data['vaccine_administration'] = clean_data(record['cumulative_avaccine'])
province_data['cumulative_recovered'] = clean_data(record['cumulative_recovered'])
province_data['date'] = string_to_date(record['date'])
province_total_data.append(province_data)
data_schema = [
StructField("province", StringType(), True),
StructField("active_cases", DoubleType(), True),
StructField("cumulative_cases", DoubleType(), True),
StructField("cumulative_tested", DoubleType(), True),
StructField("cumulative_deaths", DoubleType(), True),
StructField("vaccine_administration", DoubleType(), True),
StructField("cumulative_recovered", DoubleType(), True),
StructField('date', DateType(), True)
]
final_struct = StructType(fields=data_schema)
df = session.createDataFrame(province_total_data,final_struct)
final_df = df.where((df.province != "Repatriated"))
return final_df
elif data_type == 'time_series':
for record in province_total['cases']:
province_data = {}
province_data['province'] = record['province']
province_data['cases'] = clean_data(record['cases'])
province_data['cumulative_cases'] = clean_data(record['cumulative_cases'])
province_data['date_report'] = string_to_date(record['date_report'])
province_total_data.append(province_data)
data_schema = [
StructField("province", StringType(), True),
StructField("cases", DoubleType(), True),
StructField("cumulative_cases", DoubleType(), True),
StructField('date_report', DateType(), True)
]
final_struct = StructType(fields=data_schema)
df = session.createDataFrame(province_total_data,final_struct)
## Lets only consider Alberta, BC, Quebec, Ontario
alberta_df = df.where((df.province == "Alberta"))
bc_df = df.where((df.province == 'BC'))
quebec_df = df.where((df.province == 'Quebec'))
ontario_df = df.where((df.province == 'Ontario'))
return alberta_df, bc_df, quebec_df, ontario_df
if __name__ == "__main__":
pass
# alberta_cumulatve = alberta_df.cumulative_cases
# alberta_population = 4371000
# for i, v in alberta_cumulatve.iteritems():
# print((v/alberta_population) * 100000)