Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to interpret the results of susie summary? #151

Open
Leweibo opened this issue Mar 20, 2024 · 3 comments
Open

How to interpret the results of susie summary? #151

Leweibo opened this issue Mar 20, 2024 · 3 comments

Comments

@Leweibo
Copy link

Leweibo commented Mar 20, 2024

https://chr1swallace.github.io/coloc/articles/a06_SuSiE.html

In the article, the example provided by the author, there are two rows in the result of susie.res$summary.

nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf
1: 500 s105 s105 3.079008e-14 6.507291e-07 1.342030e-10 0.0008379729
2: 500 s89 s105 1.422896e-06 2.209787e-04 6.201896e-03 0.9631063075
PP.H4.abf idx1 idx2
1: 0.99916138 1 1
2: 0.03046939 2 1

Results pass decision rule H4 > 0.9

Results fail decision rule H4 > 0.9

In my study, there are even more rows in the result of susie.res$summary

print(susie.res$summary)
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2

1: 4591 rs12509595 rs1458038 0.000000e+00 4.147380e-13 0.000000e+00 0.02012341 9.798766e-01 1 1
2: 4591 rs10213506 rs1458038 1.570304e-273 1.878073e-11 8.361250e-263 1.00000000 6.399585e-12 2 1
3: 4591 rs74780855 rs1458038 5.954240e-106 1.878073e-11 3.170398e-95 1.00000000 1.328367e-13 3 1
4: 4591 rs72661739 rs1458038 1.556576e-79 1.878073e-11 8.288157e-69 1.00000000 1.963290e-13 4 1
5: 4591 rs10006582 rs1458038 1.476746e-59 1.878073e-11 7.863090e-49 1.00000000 6.277067e-13 5 1
6: 4591 rs6848130 rs1458038 2.330814e-86 1.878073e-11 1.241066e-75 1.00000000 2.036101e-09 6 1
7: 4591 rs2867702 rs1458038 1.508344e-52 1.878073e-11 8.031337e-42 1.00000000 3.088207e-13 7 1
8: 4591 rs10029510 rs1458038 6.966293e-45 1.878073e-11 3.709276e-34 1.00000000 1.354325e-12 8 1
9: 4591 rs7668598 rs1458038 1.734194e-52 1.878073e-11 9.233902e-42 1.00000000 1.516226e-12 9 1
10: 4591 rs1987331 rs1458038 1.352851e-41 1.878073e-11 7.203400e-31 1.00000000 3.023677e-13 10 1

My results Example 3:

print(susie.res2$summary)
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2

1: 5296 rs13335818 rs77924615 0.000000e+00 1.278006e-114 0.000000e+00 1.0000000 1.774691e-75 1 1
2: 5296 rs28510439 rs77924615 0.000000e+00 1.278006e-114 5.663628e-318 1.0000000 2.785318e-115 2 1
3: 5296 rs77924615 rs77924615 0.000000e+00 2.556012e-117 1.709512e-286 0.0000000 1.000000e+00 3 1
4: 5296 rs190017805 rs77924615 5.049465e-249 1.278006e-114 3.951049e-135 1.0000000 4.971996e-117 4 1
5: 5296 rs62032857 rs77924615 7.843335e-207 1.278006e-114 6.137165e-93 1.0000000 9.194789e-91 5 1
6: 5296 rs149109606 rs77924615 1.310727e-218 1.278006e-114 1.025603e-104 1.0000000 1.522628e-106 6 1
7: 5296 rs16971906 rs77924615 8.365323e-194 1.278006e-114 6.545605e-80 1.0000000 7.159603e-82 7 1
8: 5296 rs76621572 rs77924615 7.385114e-188 1.278006e-114 5.778622e-74 1.0000000 4.188686e-66 8 1
9: 5296 rs75044573 rs77924615 2.609464e-190 1.278006e-114 2.041824e-76 1.0000000 1.359528e-70 9 1
10: 5296 rs12598673 rs77924615 1.108288e-174 1.278006e-114 8.672005e-61 1.0000000 9.313257e-63 10 1
11: 5296 rs13335818 rs71373185 0.000000e+00 3.373833e-41 0.000000e+00 1.0000000 1.345593e-39 1 3
12: 5296 rs28510439 rs71373185 0.000000e+00 3.373833e-41 5.663628e-318 1.0000000 1.196660e-41 2 3
13: 5296 rs77924615 rs71373185 4.940656e-324 3.373833e-41 8.547561e-284 1.0000000 2.969029e-30 3 3
14: 5296 rs190017805 rs71373185 1.333018e-175 3.373833e-41 3.951049e-135 1.0000000 3.894044e-43 4 3
15: 5296 rs62032857 rs71373185 2.070577e-133 3.373833e-41 6.137165e-93 1.0000000 5.975595e-37 5 3
16: 5296 rs149109606 rs71373185 3.460213e-145 3.373833e-41 1.025603e-104 1.0000000 9.895198e-39 6 3
17: 5296 rs16971906 rs71373185 2.208377e-120 3.373833e-41 6.545605e-80 1.0000000 1.244894e-43 7 3
18: 5296 rs76621572 rs71373185 1.949610e-114 3.373833e-41 5.778622e-74 1.0000000 2.304057e-43 8 3
19: 5296 rs75044573 rs71373185 6.888773e-117 3.373833e-41 2.041824e-76 1.0000000 1.906309e-43 9 3
20: 5296 rs12598673 rs71373185 2.925789e-101 3.373833e-41 8.672005e-61 1.0000000 1.922213e-43 10 3
21: 5296 rs13335818 rs7198770 0.000000e+00 3.448060e-14 0.000000e+00 1.0000000 2.081256e-16 1 5
22: 5296 rs28510439 rs7198770 0.000000e+00 3.448060e-14 5.663628e-318 1.0000000 2.817607e-16 2 5
23: 5296 rs77924615 rs7198770 2.947251e-297 3.448060e-14 8.547561e-284 1.0000000 3.148348e-16 3 5
24: 5296 rs190017805 rs7198770 1.362345e-148 3.448060e-14 3.951049e-135 1.0000000 9.574237e-16 4 5
...
69: 5296 rs75044573 rs4494548 2.506562e-88 1.227609e-12 2.041824e-76 1.0000000 9.663381e-14 9 4
70: 5296 rs12598673 rs4494548 1.064583e-72 1.227609e-12 8.672005e-61 1.0000000 7.188687e-15 10 4
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2

Question:
How to interpret the results of susie summary? which rows of PP.H4.abf is the Coloc results?

If any of the results (rows) pass decision rule H4 > 0.9, then the results as a whole pass the decision rule?

@chr1swallace
Copy link
Owner

chr1swallace commented Mar 20, 2024 via email

@Leweibo
Copy link
Author

Leweibo commented Mar 21, 2024

Thanks for responding.

Perhaps I have got the answer here:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746220/

Under the assumption of only a single causal variant, if there were multiple instrumental variables used in MR, we calculated the average PP.H4 from the coloc.abf output. Under the assumption of multiple causal variants exist [28], we used the maximum PP.H4 of multiple credible sets from the coloc.susie output.

@chr1swallace
Copy link
Owner

chr1swallace commented Mar 21, 2024 via email

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants