-
Notifications
You must be signed in to change notification settings - Fork 44
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
How to interpret the results of susie summary? #151
Comments
I just replied to you asking the same question in issue #87. Susie appears to have found 10 distinct signals for trait 1 and 7 for trait 2. coloc then tries to colocalise each pair- 70 tests of colocalisation.
Are you sure you have the correct LD matrix - is it from the same population as your GWAS data and are the alleles aligned correctly? Looking at the manhattan plots, is it reasonable that there are 10 and 7 separate signals for each trait?
…________________________________
From: WB ***@***.***>
Sent: Wednesday, March 20, 2024 10:42 AM
To: chr1swallace/coloc ***@***.***>
Cc: Subscribed ***@***.***>
Subject: [chr1swallace/coloc] How to interpret the results of susie summary? (Issue #151)
https://chr1swallace.github.io/coloc/articles/a06_SuSiE.html
In the article, the example provided by the author, there are two rows in the result of susie.res$summary.
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf
1: 500 s105 s105 3.079008e-14 6.507291e-07 1.342030e-10 0.0008379729
2: 500 s89 s105 1.422896e-06 2.209787e-04 6.201896e-03 0.9631063075
PP.H4.abf idx1 idx2
1: 0.99916138 1 1
2: 0.03046939 2 1
Results pass decision rule H4 > 0.9
Results fail decision rule H4 > 0.9
In my study, there are even more rows in the result of susie.res$summary
print(susie.res$summary)
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2
1: 4591 rs12509595 rs1458038 0.000000e+00 4.147380e-13 0.000000e+00 0.02012341 9.798766e-01 1 1
2: 4591 rs10213506 rs1458038 1.570304e-273 1.878073e-11 8.361250e-263 1.00000000 6.399585e-12 2 1
3: 4591 rs74780855 rs1458038 5.954240e-106 1.878073e-11 3.170398e-95 1.00000000 1.328367e-13 3 1
4: 4591 rs72661739 rs1458038 1.556576e-79 1.878073e-11 8.288157e-69 1.00000000 1.963290e-13 4 1
5: 4591 rs10006582 rs1458038 1.476746e-59 1.878073e-11 7.863090e-49 1.00000000 6.277067e-13 5 1
6: 4591 rs6848130 rs1458038 2.330814e-86 1.878073e-11 1.241066e-75 1.00000000 2.036101e-09 6 1
7: 4591 rs2867702 rs1458038 1.508344e-52 1.878073e-11 8.031337e-42 1.00000000 3.088207e-13 7 1
8: 4591 rs10029510 rs1458038 6.966293e-45 1.878073e-11 3.709276e-34 1.00000000 1.354325e-12 8 1
9: 4591 rs7668598 rs1458038 1.734194e-52 1.878073e-11 9.233902e-42 1.00000000 1.516226e-12 9 1
10: 4591 rs1987331 rs1458038 1.352851e-41 1.878073e-11 7.203400e-31 1.00000000 3.023677e-13 10 1
My results Example 3:
print(susie.res2$summary)
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2
1: 5296 rs13335818 rs77924615 0.000000e+00 1.278006e-114 0.000000e+00 1.0000000 1.774691e-75 1 1
2: 5296 rs28510439 rs77924615 0.000000e+00 1.278006e-114 5.663628e-318 1.0000000 2.785318e-115 2 1
3: 5296 rs77924615 rs77924615 0.000000e+00 2.556012e-117 1.709512e-286 0.0000000 1.000000e+00 3 1
4: 5296 rs190017805 rs77924615 5.049465e-249 1.278006e-114 3.951049e-135 1.0000000 4.971996e-117 4 1
5: 5296 rs62032857 rs77924615 7.843335e-207 1.278006e-114 6.137165e-93 1.0000000 9.194789e-91 5 1
6: 5296 rs149109606 rs77924615 1.310727e-218 1.278006e-114 1.025603e-104 1.0000000 1.522628e-106 6 1
7: 5296 rs16971906 rs77924615 8.365323e-194 1.278006e-114 6.545605e-80 1.0000000 7.159603e-82 7 1
8: 5296 rs76621572 rs77924615 7.385114e-188 1.278006e-114 5.778622e-74 1.0000000 4.188686e-66 8 1
9: 5296 rs75044573 rs77924615 2.609464e-190 1.278006e-114 2.041824e-76 1.0000000 1.359528e-70 9 1
10: 5296 rs12598673 rs77924615 1.108288e-174 1.278006e-114 8.672005e-61 1.0000000 9.313257e-63 10 1
11: 5296 rs13335818 rs71373185 0.000000e+00 3.373833e-41 0.000000e+00 1.0000000 1.345593e-39 1 3
12: 5296 rs28510439 rs71373185 0.000000e+00 3.373833e-41 5.663628e-318 1.0000000 1.196660e-41 2 3
13: 5296 rs77924615 rs71373185 4.940656e-324 3.373833e-41 8.547561e-284 1.0000000 2.969029e-30 3 3
14: 5296 rs190017805 rs71373185 1.333018e-175 3.373833e-41 3.951049e-135 1.0000000 3.894044e-43 4 3
15: 5296 rs62032857 rs71373185 2.070577e-133 3.373833e-41 6.137165e-93 1.0000000 5.975595e-37 5 3
16: 5296 rs149109606 rs71373185 3.460213e-145 3.373833e-41 1.025603e-104 1.0000000 9.895198e-39 6 3
17: 5296 rs16971906 rs71373185 2.208377e-120 3.373833e-41 6.545605e-80 1.0000000 1.244894e-43 7 3
18: 5296 rs76621572 rs71373185 1.949610e-114 3.373833e-41 5.778622e-74 1.0000000 2.304057e-43 8 3
19: 5296 rs75044573 rs71373185 6.888773e-117 3.373833e-41 2.041824e-76 1.0000000 1.906309e-43 9 3
20: 5296 rs12598673 rs71373185 2.925789e-101 3.373833e-41 8.672005e-61 1.0000000 1.922213e-43 10 3
21: 5296 rs13335818 rs7198770 0.000000e+00 3.448060e-14 0.000000e+00 1.0000000 2.081256e-16 1 5
22: 5296 rs28510439 rs7198770 0.000000e+00 3.448060e-14 5.663628e-318 1.0000000 2.817607e-16 2 5
23: 5296 rs77924615 rs7198770 2.947251e-297 3.448060e-14 8.547561e-284 1.0000000 3.148348e-16 3 5
24: 5296 rs190017805 rs7198770 1.362345e-148 3.448060e-14 3.951049e-135 1.0000000 9.574237e-16 4 5
...
69: 5296 rs75044573 rs4494548 2.506562e-88 1.227609e-12 2.041824e-76 1.0000000 9.663381e-14 9 4
70: 5296 rs12598673 rs4494548 1.064583e-72 1.227609e-12 8.672005e-61 1.0000000 7.188687e-15 10 4
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2
Question:
How to interpret the results of susie summary? which rows of PP.H4.abf is the Coloc results?
If any of the results (rows) pass decision rule H4 > 0.9, then the results as a whole pass the decision rule?
—
Reply to this email directly, view it on GitHub<#151>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AAQWR2B23ZO7M5FITJXTUH3YZFRYBAVCNFSM6AAAAABE7GX26CVHI2DSMVQWIX3LMV43ASLTON2WKOZSGE4TOMRQHA4DMNQ>.
You are receiving this because you are subscribed to this thread.Message ID: ***@***.***>
|
Thanks for responding. Perhaps I have got the answer here: Under the assumption of only a single causal variant, if there were multiple instrumental variables used in MR, we calculated the average PP.H4 from the coloc.abf output. Under the assumption of multiple causal variants exist [28], we used the maximum PP.H4 of multiple credible sets from the coloc.susie output. |
My strong advice is to check that your Susie results make sense. I doubt you have so many casual variants really. I fear your LD matrix is not a good match for your population, either because there's a real mismatch or because there are allele ordering errors. Please do check the Susie results make sense before trying to interpret the coloc results.
…________________________________
From: WB ***@***.***>
Sent: Thursday, March 21, 2024 5:05:28 PM
To: chr1swallace/coloc ***@***.***>
Cc: Chris Wallace ***@***.***>; Comment ***@***.***>
Subject: Re: [chr1swallace/coloc] How to interpret the results of susie summary? (Issue #151)
Thanks for responding.
Perhaps I have got the answer here:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746220/
Under the assumption of only a single causal variant, if there were multiple instrumental variables used in MR, we calculated the average PP.H4 from the coloc.abf output. Under the assumption of multiple causal variants exist [28<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9746220/#CR28>], we used the maximum PP.H4 of multiple credible sets from the coloc.susie output.
—
Reply to this email directly, view it on GitHub<#151 (comment)>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AAQWR2CXDGJLHGBXIXMDC2TYZMHNRAVCNFSM6AAAAABE7GX26CVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDAMJTGA2DCNBRGE>.
You are receiving this because you commented.Message ID: ***@***.***>
|
https://chr1swallace.github.io/coloc/articles/a06_SuSiE.html
In the article, the example provided by the author, there are two rows in the result of susie.res$summary.
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf
1: 500 s105 s105 3.079008e-14 6.507291e-07 1.342030e-10 0.0008379729
2: 500 s89 s105 1.422896e-06 2.209787e-04 6.201896e-03 0.9631063075
PP.H4.abf idx1 idx2
1: 0.99916138 1 1
2: 0.03046939 2 1
Results pass decision rule H4 > 0.9
Results fail decision rule H4 > 0.9
In my study, there are even more rows in the result of susie.res$summary
My results Example 3:
print(susie.res2$summary)
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2
1: 5296 rs13335818 rs77924615 0.000000e+00 1.278006e-114 0.000000e+00 1.0000000 1.774691e-75 1 1
2: 5296 rs28510439 rs77924615 0.000000e+00 1.278006e-114 5.663628e-318 1.0000000 2.785318e-115 2 1
3: 5296 rs77924615 rs77924615 0.000000e+00 2.556012e-117 1.709512e-286 0.0000000 1.000000e+00 3 1
4: 5296 rs190017805 rs77924615 5.049465e-249 1.278006e-114 3.951049e-135 1.0000000 4.971996e-117 4 1
5: 5296 rs62032857 rs77924615 7.843335e-207 1.278006e-114 6.137165e-93 1.0000000 9.194789e-91 5 1
6: 5296 rs149109606 rs77924615 1.310727e-218 1.278006e-114 1.025603e-104 1.0000000 1.522628e-106 6 1
7: 5296 rs16971906 rs77924615 8.365323e-194 1.278006e-114 6.545605e-80 1.0000000 7.159603e-82 7 1
8: 5296 rs76621572 rs77924615 7.385114e-188 1.278006e-114 5.778622e-74 1.0000000 4.188686e-66 8 1
9: 5296 rs75044573 rs77924615 2.609464e-190 1.278006e-114 2.041824e-76 1.0000000 1.359528e-70 9 1
10: 5296 rs12598673 rs77924615 1.108288e-174 1.278006e-114 8.672005e-61 1.0000000 9.313257e-63 10 1
11: 5296 rs13335818 rs71373185 0.000000e+00 3.373833e-41 0.000000e+00 1.0000000 1.345593e-39 1 3
12: 5296 rs28510439 rs71373185 0.000000e+00 3.373833e-41 5.663628e-318 1.0000000 1.196660e-41 2 3
13: 5296 rs77924615 rs71373185 4.940656e-324 3.373833e-41 8.547561e-284 1.0000000 2.969029e-30 3 3
14: 5296 rs190017805 rs71373185 1.333018e-175 3.373833e-41 3.951049e-135 1.0000000 3.894044e-43 4 3
15: 5296 rs62032857 rs71373185 2.070577e-133 3.373833e-41 6.137165e-93 1.0000000 5.975595e-37 5 3
16: 5296 rs149109606 rs71373185 3.460213e-145 3.373833e-41 1.025603e-104 1.0000000 9.895198e-39 6 3
17: 5296 rs16971906 rs71373185 2.208377e-120 3.373833e-41 6.545605e-80 1.0000000 1.244894e-43 7 3
18: 5296 rs76621572 rs71373185 1.949610e-114 3.373833e-41 5.778622e-74 1.0000000 2.304057e-43 8 3
19: 5296 rs75044573 rs71373185 6.888773e-117 3.373833e-41 2.041824e-76 1.0000000 1.906309e-43 9 3
20: 5296 rs12598673 rs71373185 2.925789e-101 3.373833e-41 8.672005e-61 1.0000000 1.922213e-43 10 3
21: 5296 rs13335818 rs7198770 0.000000e+00 3.448060e-14 0.000000e+00 1.0000000 2.081256e-16 1 5
22: 5296 rs28510439 rs7198770 0.000000e+00 3.448060e-14 5.663628e-318 1.0000000 2.817607e-16 2 5
23: 5296 rs77924615 rs7198770 2.947251e-297 3.448060e-14 8.547561e-284 1.0000000 3.148348e-16 3 5
24: 5296 rs190017805 rs7198770 1.362345e-148 3.448060e-14 3.951049e-135 1.0000000 9.574237e-16 4 5
...
69: 5296 rs75044573 rs4494548 2.506562e-88 1.227609e-12 2.041824e-76 1.0000000 9.663381e-14 9 4
70: 5296 rs12598673 rs4494548 1.064583e-72 1.227609e-12 8.672005e-61 1.0000000 7.188687e-15 10 4
nsnps hit1 hit2 PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf idx1 idx2
Question:
How to interpret the results of susie summary? which rows of PP.H4.abf is the Coloc results?
If any of the results (rows) pass decision rule H4 > 0.9, then the results as a whole pass the decision rule?
The text was updated successfully, but these errors were encountered: