-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPET504E_Lecture_Notes.aux
270 lines (270 loc) · 12.7 KB
/
PET504E_Lecture_Notes.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Block diagram ?????}}{2}}
\newlabel{input_output}{{1.1}{2}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Typical input and output signals - Transient phenomena.}}{3}}
\newlabel{Transient_phenomena}{{1.2}{3}}
\newlabel{InvP}{{1.1}{4}}
\newlabel{ForP}{{1.2}{4}}
\citation{Bourdet_2002_1}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Parameters estimated based on the analysis of buildup data.}}{5}}
\newlabel{Build_up}{{1.3}{5}}
\newlabel{A}{{1.3}{5}}
\newlabel{B}{{1.4}{5}}
\@writefile{toc}{\contentsline {section}{\numberline {2}Flow Equations}{5}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Homogeneous vs heterogeneous reservoir, pressure difference .}}{6}}
\newlabel{Homogenous_vs_Heterogenous_dp}{{1.4}{6}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Homogeneous vs heterogeneous reservoir - logarithmic derivative.}}{6}}
\newlabel{Homogenous_vs_Heterogenous_dpder}{{1.5}{6}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Flow diagram of computer aided parameter estimation.}}{7}}
\newlabel{Flow_Chart1}{{1.6}{7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Conservation of mass}{7}}
\newlabel{continuity}{{2.1}{7}}
\newlabel{continuity_Cartesian}{{2.2}{7}}
\newlabel{continuity_cylindrical}{{2.3}{7}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Conservation of momentum in porous media}{7}}
\newlabel{Darcy's_Law}{{2.4}{8}}
\newlabel{Permeability_Tensor}{{2.2}{8}}
\newlabel{Z}{{2.2}{8}}
\newlabel{Darcy_velocity}{{2.5}{8}}
\newlabel{Specific_weight}{{2.2}{8}}
\newlabel{Continuity_Darcy}{{2.6}{8}}
\newlabel{Continuity_Darcy_Cylindrical}{{2.7}{9}}
\newlabel{Z_Aside}{{2.2}{9}}
\newlabel{Formation_Volume_Factor}{{2.8}{9}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces (a) Fully penetrated vertical well. (b) Partially penetrated vertical well.}}{10}}
\newlabel{PartialvsFullPenet}{{2.1}{10}}
\newlabel{Continuity_B}{{2.9}{10}}
\newlabel{Continuity_B_Expand_RHS}{{2.10}{10}}
\newlabel{Fluid_compressibility}{{2.11}{10}}
\newlabel{Rock_compressibility}{{2.12}{10}}
\newlabel{Continuity_B_ct}{{2.13}{10}}
\newlabel{Continuity_B_ct_Darcy}{{2.14}{11}}
\@writefile{toc}{\contentsline {subsubsection}{Slightly compressible fluid of constant compressibility}{11}}
\newlabel{Continuity_B_ct_Darcy_No_Gravity1}{{2.15}{11}}
\newlabel{Continuity_B_ct_Darcy_No_Gravity1_approx}{{2.16}{11}}
\newlabel{Laplacian_Cartesian}{{2.2}{11}}
\newlabel{Laplacian_Cylindrical}{{2.2}{11}}
\newlabel{Laplacian_Spherical}{{2.2}{11}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces (a) Cartesian coordinates. (b) Cylindrical coordinates. (c) Spherical coordinates.}}{12}}
\newlabel{Coordinates}{{2.2}{12}}
\newlabel{c_constant}{{2.17}{12}}
\newlabel{rho_func}{{2.18}{12}}
\newlabel{rho_func_2}{{2.19}{12}}
\newlabel{Continuity_B_ct_Darcy_No_Gravity1_approx_rho}{{2.20}{12}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Multiphase flow}{13}}
\newlabel{Continuity_oil}{{2.21}{13}}
\newlabel{Continuity_water}{{2.22}{13}}
\newlabel{Continuity_gas}{{2.23}{13}}
\newlabel{Darcy_multiphase}{{2.24}{13}}
\newlabel{Continuity_oil_Darcy}{{2.25}{13}}
\newlabel{Continuity_water_Darcy}{{2.26}{13}}
\newlabel{Continuity_gas_Darcy}{{2.27}{13}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces $R_{s}$, $B_{o}$, $B_{g}$ behavior.}}{14}}
\newlabel{Rs_Bo_Bg}{{2.3}{14}}
\newlabel{Pseudo_Potential}{{2.28}{14}}
\newlabel{Pseudo_Potential_1}{{2.29}{15}}
\newlabel{Pseudo_Potential_2}{{2.30}{15}}
\newlabel{Pseudo_Potential_Final}{{2.31}{15}}
\newlabel{Pseudo_Potential_Final_Stress_dependent}{{2.32}{15}}
\newlabel{Pseudo_Pressure}{{2.33}{15}}
\newlabel{Pseudo_Pressure_1}{{2.34}{15}}
\citation{Al-Hussainy_1966_1}
\citation{Al-Hussainy_1966_1}
\newlabel{Pseudo_Pressure_2}{{2.35}{16}}
\newlabel{Continuity_B_ct_Darcy_Nogravity}{{2.36}{16}}
\newlabel{Pseudo_Pressure_Continuity}{{2.37}{16}}
\newlabel{Pseudo_Pressure_potential}{{2.38}{16}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Diffusivity equation for single phase gas flow - real gas flow}{16}}
\newlabel{Gas_Flow_1}{{2.39}{16}}
\citation{Al-Hussainy_1966_1}
\newlabel{Gas_Flow_2}{{2.40}{17}}
\newlabel{Real_Gas_Law}{{2.41}{17}}
\newlabel{Gas_Flow_3}{{2.42}{17}}
\newlabel{Gas_Flow_4}{{2.43}{17}}
\newlabel{Pseudo_Pressure_alhussainy}{{2.44}{17}}
\newlabel{Pseudo_Pressure_alhussainy_1}{{2.45}{17}}
\newlabel{Pseudo_Pressure_alhussainy_2}{{2.46}{17}}
\newlabel{Gas_Flow_Final}{{2.47}{17}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.5}1-D Radial flow equation}{17}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Radial flow geometry.}}{18}}
\newlabel{Radial_Flow_Fig}{{2.4}{18}}
\newlabel{Radial_Flow}{{2.48}{18}}
\newlabel{Radial_flow_general}{{2.50}{18}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces r-z coordinates.}}{19}}
\newlabel{r_z}{{2.5}{19}}
\newlabel{Pseudo_pressure_r}{{2.51}{19}}
\newlabel{Radial_flow_Pseudo_pressure}{{2.52}{19}}
\@writefile{toc}{\contentsline {subsubsection}{Dimensionless Variables}{19}}
\newlabel{Dimensionless_time}{{2.53}{19}}
\newlabel{Dimensionless_radial_1}{{2.54}{20}}
\newlabel{Dimensionless_radial_2}{{2.55}{20}}
\newlabel{Dimensionless_lenght}{{2.56}{20}}
\newlabel{Dimensionless_diffusivity}{{2.57}{20}}
\newlabel{Dimensionless_radial_3}{{2.58}{20}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Production from a vertical full penetrating well. Volumetric flux, q, into the wellbore (flow out of the reservoir the boundary represented by wellbore).}}{20}}
\newlabel{Production_Full}{{2.6}{20}}
\newlabel{Well_boundary}{{2.59}{21}}
\newlabel{mD_definition}{{2.60}{21}}
\citation{Kale_1980_1}
\citation{Peres_1990_1}
\newlabel{Dimensionless_radial_4}{{2.61}{22}}
\newlabel{Well_boundary_2}{{2.62}{22}}
\newlabel{initial_condition}{{2.63}{22}}
\newlabel{initial_condition_md}{{2.64}{22}}
\newlabel{Dimensionless_radial_md_Sum}{{2.65}{22}}
\newlabel{Boundary_1_sum}{{2.66}{22}}
\newlabel{Boundary_2_sum}{{2.67}{22}}
\newlabel{Initial_con_sum}{{2.68}{22}}
\newlabel{assumption}{{2.69}{22}}
\newlabel{assumption_1}{{2.70}{23}}
\newlabel{assumption_2}{{2.71}{23}}
\newlabel{mD_to_pD}{{2.72}{23}}
\newlabel{Dimensionless_radial_md_Sum_lin}{{2.73}{23}}
\newlabel{Boundary_1_sum_lin}{{2.74}{23}}
\newlabel{Boundary_2_sum_lin}{{2.75}{23}}
\newlabel{Initial_con_sum_lin}{{2.76}{23}}
\newlabel{Line_source_boundary}{{2.77}{24}}
\newlabel{Line_Source}{{2.78}{24}}
\newlabel{Boundary_Line_Source1}{{2.79}{24}}
\newlabel{Boundary_Line_Source2}{{2.80}{24}}
\newlabel{Initial_Line_Source}{{2.81}{24}}
\newlabel{mD_Line_Source}{{2.82}{24}}
\newlabel{mD_Boltzman_rD1}{{2.83}{24}}
\newlabel{mD_Boltzman_rD2}{{2.84}{24}}
\newlabel{mD_Boltzman_rD3}{{2.85}{24}}
\newlabel{mD_Boltzman_rD4}{{2.86}{25}}
\newlabel{mD_Boltzman_Final}{{2.87}{25}}
\newlabel{line_source_Boltzman_BC}{{2.88}{25}}
\newlabel{line_source_Boltzman_BC2}{{2.89}{25}}
\newlabel{wD}{{2.90}{25}}
\newlabel{Sol_wD}{{2.91}{25}}
\newlabel{Sol_wD_1}{{2.92}{26}}
\newlabel{Sol_wD_2}{{2.93}{26}}
\newlabel{Sol_wD_3}{{2.94}{26}}
\newlabel{Sol_wD_4}{{2.95}{26}}
\citation{Theis_1935_1}
\citation{Abramowitz_1965_1}
\newlabel{Sol_wD_5}{{2.96}{27}}
\newlabel{Theis_Solution}{{2.97}{27}}
\newlabel{Ei_E1}{{2.98}{27}}
\newlabel{Theis_Solution_Ei}{{2.99}{27}}
\newlabel{Ei_expansion}{{2.100}{27}}
\newlabel{Ei_approx}{{2.101}{27}}
\newlabel{Eulers_constant}{{2.102}{27}}
\newlabel{Semilog_Approx1}{{2.103}{28}}
\newlabel{Semilog_Approx2}{{2.104}{28}}
\newlabel{Semilog_Approx2_}{{2.105}{28}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Comparison of exponential integral with logarithmic approximation given by Eq. 2.101\hbox {}.}}{28}}
\newlabel{Exponential_Integral_approximation}{{2.7}{28}}
\newlabel{Line_Solution_dif_rD}{{2.106}{30}}
\newlabel{Calculus_1}{{2.107}{30}}
\newlabel{Boundary_der1}{{2.108}{30}}
\newlabel{Boundary_der2}{{2.109}{30}}
\newlabel{Inner_Boundary1}{{2.110}{30}}
\newlabel{Boundary_der3}{{2.111}{30}}
\citation{Mueller_1965_1}
\citation{Mueller_1965_1}
\newlabel{Boundary_der4}{{2.112}{31}}
\newlabel{Pwf}{{2.113}{31}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.6}Semilog analysis}{31}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Comparison of line source solution to finite radius wellbore solution\cite {Mueller_1965_1}.}}{32}}
\newlabel{Line_Finite_Comp}{{2.8}{32}}
\newlabel{mpwf_1}{{2.114}{33}}
\newlabel{mpwf_2}{{2.115}{33}}
\newlabel{mpwf_3}{{2.116}{33}}
\newlabel{mpwf_4}{{2.117}{33}}
\newlabel{semilog_slope}{{2.118}{33}}
\citation{Boe_1989_1}
\citation{Serra_1990_1}
\newlabel{semilog_slope_1}{{2.119}{34}}
\newlabel{semilog_slope2}{{2.120}{34}}
\newlabel{q_rw}{{2.121}{34}}
\newlabel{chain_dpdr_z}{{2.122}{34}}
\newlabel{chain_dpdt_z}{{2.123}{34}}
\newlabel{dpwf_dlnt}{{2.124}{35}}
\newlabel{q_rw_2}{{2.125}{35}}
\newlabel{q_rw_3}{{2.126}{35}}
\newlabel{kkro_compute}{{2.127}{35}}
\newlabel{mD_no_p_var}{{2.128}{35}}
\newlabel{tD_no_p_var}{{2.129}{35}}
\newlabel{pD_no_p_var_rD}{{2.130}{36}}
\newlabel{p_r_t}{{2.131}{36}}
\newlabel{slope_p_r_t}{{2.132}{36}}
\newlabel{slope_dp_r_t}{{2.133}{36}}
\newlabel{slope_dp_r_t0}{{2.134}{36}}
\citation{Tiab_1979_1}
\citation{Bourdet_1983_1}
\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Semilog analysis.}}{37}}
\newlabel{Semilog_dp_vs_p}{{2.9}{37}}
\newlabel{t0}{{2.135}{37}}
\newlabel{t0_1}{{2.136}{37}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.7}Pressure derivative}{37}}
\newlabel{Line_Source_recall}{{2.137}{38}}
\newlabel{Line_Source_der_tD}{{2.138}{38}}
\newlabel{dp_dlnt}{{2.139}{38}}
\newlabel{Line_Source_der_tD1}{{2.140}{38}}
\newlabel{Line_Source_der_tD_dimensional}{{2.141}{38}}
\citation{Bourdet_2002_1}
\newlabel{Line_Source_der_tD_dimensional_approximation}{{2.142}{39}}
\newlabel{Line_Source_der_tD_dimensional_approximation_kh}{{2.143}{39}}
\newlabel{numerical_dp_dplnt_forward_difference}{{2.144}{39}}
\newlabel{numerical_dp_dplnt_three_point}{{2.145}{39}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.8}Type curve analysis (or type curve matching)}{40}}
\newlabel{logpD_1}{{2.146}{40}}
\newlabel{logpD_2}{{2.147}{40}}
\newlabel{tD_match}{{2.148}{40}}
\newlabel{phct_match}{{2.149}{40}}
\newlabel{k_match_1}{{2.150}{40}}
\newlabel{k_match_2}{{2.151}{40}}
\@writefile{toc}{\contentsline {subsubsection}{Interference testing}{41}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces A schematic of a single well interference test.}}{41}}
\newlabel{Interference_test}{{2.10}{41}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Well \emph {A} is the active well and is where the production occurs. Well \emph {O} is the observation well where the pressure is measured.}}{42}}
\newlabel{Active_Obser_well}{{2.11}{42}}
\@writefile{toc}{\contentsline {subsubsection}{TCA procedure}{42}}
\citation{Bourdet_1983_1}
\citation{Onur_1988_1}
\@writefile{toc}{\contentsline {subsubsection}{Use of derivative in TCA}{43}}
\newlabel{dpD_dtD_rD2}{{2.152}{43}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces Line source solution.}}{44}}
\newlabel{pD_pD_der_Line_Source}{{2.12}{44}}
\newlabel{Rpp_prime}{{2.153}{44}}
\newlabel{Rpp_prime_2}{{2.154}{45}}
\newlabel{Rpp_prime_3}{{2.155}{45}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces Line source solution.}}{45}}
\newlabel{Rpp}{{2.13}{45}}
\citation{Onur_1989_2}
\citation{Blasingame_1989_1}
\newlabel{ddeltap_dlnt}{{2.156}{46}}
\newlabel{Rpp_deltap}{{2.157}{46}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces Rpp' semilog analysis.}}{47}}
\newlabel{Rpp_Semilog}{{2.14}{47}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.9}Formation Damage}{47}}
\citation{Everdingen_1953_1}
\citation{Hurst_1953_1}
\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces Skin effect.}}{48}}
\newlabel{Skin_effect}{{2.15}{48}}
\bibstyle{plain}
\bibdata{References}
\bibcite{Abramowitz_1965_1}{1}
\bibcite{Al-Hussainy_1966_1}{2}
\bibcite{Blasingame_1989_1}{3}
\bibcite{Boe_1989_1}{4}
\bibcite{Bourdet_2002_1}{5}
\bibcite{Bourdet_1983_1}{6}
\bibcite{Hurst_1953_1}{7}
\bibcite{Kale_1980_1}{8}
\bibcite{Mueller_1965_1}{9}
\newlabel{Skin}{{2.158}{49}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces Skin zone.}}{49}}
\newlabel{Skin_1}{{2.16}{49}}
\bibcite{Onur_1989_2}{10}
\bibcite{Onur_1988_1}{11}
\bibcite{Peres_1990_1}{12}
\bibcite{Serra_1990_1}{13}
\bibcite{Theis_1935_1}{14}
\bibcite{Tiab_1979_1}{15}
\bibcite{Everdingen_1953_1}{16}
\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces Effect of skin on pressure profiles.}}{50}}
\newlabel{Skin_effect_2}{{2.17}{50}}