|
| 1 | +import doctr.io |
| 2 | +from doctr.models import ocr_predictor |
| 3 | +from doctr.io import DocumentFile |
| 4 | +import torch |
| 5 | +import numpy as np |
| 6 | +import matplotlib.pyplot as plt |
| 7 | +from doctr.utils.visualization import visualize_page |
| 8 | +import argparse |
| 9 | +from PIL import Image |
| 10 | +import json |
| 11 | +import cv2 as cv |
| 12 | + |
| 13 | + |
| 14 | +class OCR: |
| 15 | + def __init__(self, image): |
| 16 | + self.reader = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_mobilenet_v3_large', pretrained=True, detect_orientation=True, paragraph_break=0.015, assume_straight_pages=True).to(torch.device("cuda:0")) |
| 17 | + self.image = image |
| 18 | + self.results = self.reader(image) |
| 19 | + |
| 20 | + |
| 21 | +def draw(results: doctr.io.Document, image): |
| 22 | + print('drawing') |
| 23 | + annotated_img = image.copy() |
| 24 | + height, width = results.pages[0].dimensions |
| 25 | + print(results.pages[0].blocks) |
| 26 | + for block in results.pages[0].blocks: |
| 27 | + block_bb = ((int(block.geometry[0][0] * width), int(block.geometry[0][1] * height)), |
| 28 | + (int(block.geometry[1][0] * width), int(block.geometry[1][1] * height))) |
| 29 | + print(f'drawing block with {block_bb}') |
| 30 | + annotated_img = cv.rectangle(annotated_img, block_bb[0], block_bb[1], (255, 0, 0), 3) |
| 31 | + for line in block.lines: |
| 32 | + line_bb = ((int(line.geometry[0][0] * width ), int(line.geometry[0][1] * height)), |
| 33 | + (int(line.geometry[1][0] * width), int(line.geometry[1][1] * height))) |
| 34 | + print(f'drawing line with {line_bb}') |
| 35 | + annotated_img = cv.rectangle(annotated_img, line_bb[0], line_bb[1], (0, 255, 0), 2) |
| 36 | + return annotated_img |
| 37 | + |
| 38 | + |
| 39 | +if __name__ == '__main__': |
| 40 | + parser = argparse.ArgumentParser() |
| 41 | + parser.add_argument('image', type=str, help='Path to image') |
| 42 | + args = parser.parse_args() |
| 43 | + image = DocumentFile.from_images(args.image) |
| 44 | + document = np.asarray(Image.open(args.image)) |
| 45 | + ocr = OCR(image) |
| 46 | + with open('ocr_results.json', 'w') as file: |
| 47 | + json.dump(ocr.results.export(), file) |
| 48 | + cv.imwrite('ocr_draw.jpg', draw(ocr.results, document)) |
| 49 | + ocr_viz = visualize_page(ocr.results.pages[0].export(), document, words_only=False) |
| 50 | + plt.savefig("ocr_visualizer.png") |
| 51 | + |
0 commit comments