-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcombine_results_noise.py
executable file
·243 lines (227 loc) · 10.7 KB
/
combine_results_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import matplotlib.pyplot as plt
from collections import defaultdict
import pandas as pd
import os
from collections import defaultdict
import numpy as np
import ast
from itertools import islice
from torch import tensor
import torch
import re
def frange (x, y, z):
l = [x]
while (l[-1] < y):
l.append(np.round(l[-1] + z, 2))
return l
models = ["dysat", "evgcno", "gclstm"]
datasets = ["radoslaw", "opsahl-ucsocial", "reddit_hyperlinks", "DBLP"]
method = 'pgd'
constraint = "noise"
online = False
nn_graphs = [7, 10, 13, 14, 18, 20] #, 39]
ntargets = [1] #, 10, 20] #1
contexts = [6, 9, 12, 13, 17, 19] #, 38]
target_ts = [6, 9, 12, 13, 17, 19] #, 38]
epsilons = frange(0.01, 1.0, 0.01)
epsilon1s = [100] #[2, 20, 100]
all_results_df = defaultdict(lambda: [])
# os.chdir("old_results/")
if method == 'greedy':
dirs = ["baselines/greedy/results_{}/{}/multi_targets/{}".format(model, dataset, constraint) for dataset in datasets for model in models]
elif method == 'pgd':
dirs = ["results_{}/{}/multi_targets/pgd/{}".format(model, dataset, constraint) for dataset in datasets for model in models]
else:
dirs = ["baselines/{}/results_{}/{}/multi_targets/{}".format(method, model, dataset, constraint) for dataset in datasets for model in models]
for res_dir in dirs:
ntg = 1
if 'baselines' in res_dir:
dataset = res_dir.split("/")[3]
model = res_dir.split("/")[2].split("_")[1]
else:
dataset = res_dir.split("/")[1]
model = res_dir.split("/")[0].split("_")[1]
try:
files = os.listdir(res_dir)
except:
continue
for filename in files:
try:
chars = filename[:-4].split("_")
if online and chars[0] != "onlineResults":
continue
elif not (online) and not chars[0].startswith("results"):
continue
results_fname = chars[0]
chars = chars[1:]
if ("seq" in chars[0]):
attk_tg = chars[0]
chars = chars[1:]
else:
attk_tg = "pool"
if (method in ['random', 'degree']):
if ('seed' in filename):
chars = chars[:-1] + ['l0'] + [chars[-1]]
else:
chars.append("l0")
if ('seed' in filename):
if (len(chars) == 8):
sampling, ntg = chars[0], int(chars[1][2:])
chars = chars[2:]
elif (len(chars) == 7):
if ('tg' in chars[0]):
sampling, ntg = "rd", int(chars[0][2:])
chars = chars[1:]
else:
sampling = chars[0]
chars = chars[1:]
elif "tg" in chars[0]:
sampling, ntg = "rd", int(chars[0][2:])
chars = chars[1:]
else:
sampling = "rd"
else:
if (len(chars) == 7):
sampling, ntg = chars[0], int(chars[1][2:])
chars = chars[2:]
elif (len(chars) == 6):
if ('tg' in chars[0]):
sampling, ntg = "rd", int(chars[0][2:])
chars = chars[1:]
else:
sampling = chars[0]
chars = chars[1:]
else:
sampling = "rd"
if (ntg not in ntargets):
continue
context, target_snap = chars[1].split("t")
try:
num_graphs, context, target_snap, eps, b_eps1, lambda_1, seed = int(chars[0][1:]), int(context[1:]), int(target_snap), float(chars[2][1:]), int(chars[3][2:]), chars[4][1:], int(chars[5][4:])
except:
num_graphs, context, target_snap, eps, b_eps1, lambda_1 = int(chars[0][1:]), int(context[1:]), int(target_snap), float(chars[2][1:]), int(chars[3][2:]), chars[4][1:]
seed = 123
try:
lambda_1 = float(lambda_1)
except:
lambda_1 = float(0.0)
if ((num_graphs not in nn_graphs) or (eps not in epsilons) or (b_eps1 not in epsilon1s) or (context not in contexts) or (target_snap not in target_ts)):
continue
except:
continue
print (res_dir, filename)
with open("{}/{}".format(res_dir, filename), "r") as f:
results = defaultdict(lambda: [])
n_samples, time_taken = 0, 0
perb_line, perb_metric = "", None
for line in f:
if ("Orig AUCROC" in line) or ("Orig Accuracy" in line):
orig_auc = float(line.split(": ")[1][:-1])
# print ("Orig AUCROC\t{}".format(orig_auc))
elif ("AUCROC" in line) or ("Accuracy" in line):
perb_metric = float(line.split(": ")[1][:-1])
# print ("Perb AUCROC\t{}".format(perb_metric))
elif ("Total time taken" in line):
time_taken = float(line.split(": ")[1][:-1])
elif ("Perturbation" in line):
# continue
if constraint == 'noise':
if ('Target_id' in line):
try:
perb_line = line.split("Perturbations: ")[1]
except:
results["aml"].append(int(line.split("Perturbation size: ")[1]))
continue
else:
perb_line = f.readline()[:-1]
while True:
try:
perb_times, perb_targets, perb_nodes, perb_direcs = eval(re.sub("device='cuda:[0-9]'", "device='cpu'", perb_line))
break
except:
line = f.readline()[:-1]
if ("Target_id" in line):
print (perb_line)
print(line)
exit()
perb_line += line
results["aml"].append(perb_times.shape[0])
elif constraint == 'noise_feat':
results['aml'].append(float(line.split("Perturbation norm: ")[1]))
elif ((":" in line) and ("," in line)): # and ('tensor' not in line) and ('cuda' not in line) and ('Probs' not in line)):
output = line[:-1]
k_in_name = False
for result in output.split(", "):
try:
name, value = result.split(": ")
if (name == "K"):
k_in_name = True
except:
continue
try:
value = int(value) if (name == "Pred") else float(value)
except:
continue
results[name].append(value)
if (k_in_name):
n_samples += 1
if (perb_metric is None):
print ("{} running".format(filename))
continue
if (len(results["aml"]) != n_samples) or (n_samples != len(results['K'])) or (len(results["dz'-dz"]) != n_samples):
print (filename, "weird")
continue
else:
print (n_samples)
all_results_df["Results"] += n_samples * [results_fname]
all_results_df["Num_graphs"] += n_samples * [num_graphs]
all_results_df["Model"] += n_samples * [model]
all_results_df["Dataset"] += n_samples * [dataset]
all_results_df["Method"] += n_samples * [method]
all_results_df["Seed"] += n_samples * [seed]
all_results_df["Sequential"] += n_samples * [attk_tg]
all_results_df["Epsilon"] += n_samples * [eps]
all_results_df["Epsilon1"] += n_samples * [b_eps1]
all_results_df["Sampling"] += n_samples * [sampling]
all_results_df["Ntargets"] += n_samples * [ntg]
all_results_df["Context"] += n_samples * [context]
all_results_df["Target_ts"] += n_samples * [target_snap]
all_results_df["Lambda"] += n_samples * [lambda_1]
all_results_df["Perf. Drop"] += n_samples * [orig_auc - perb_metric]
all_results_df["Perf. Drop %"] += n_samples * [(orig_auc - perb_metric)/orig_auc*100]
all_results_df["Perb Perf."] += n_samples * [perb_metric]
all_results_df["Orig Perf."] += n_samples * [orig_auc]
if "Time taken" in results:
all_results_df["Time taken"] += n_samples * [np.mean(results["Time taken"])]
else:
all_results_df["Time taken"] += n_samples * [time_taken/n_samples]
all_results_df["aml"] += results["aml"] #n_samples * [budget] #
all_results_df["K"] += results["K"]
all_results_df["E"] += results["E"]
# all_results_df["dz'"] += results["dz'"]
all_results_df["dz_frac"] += results["dz'/dz"]
all_results_df["del_dz"] += results["dz'-dz"]
print ([(k, len(v)) for k, v in all_results_df.items()])
if online:
constraint = "noise_online"
df = pd.DataFrame(all_results_df)
if (len(datasets) > 0):
df.to_csv("av_results/all_{}_{}.csv".format(method, constraint), index=False)
else:
df.to_csv("av_results/all_{}_{}_{}.csv".format(method, datasets[0], constraint), index=False)
df = df.loc[~np.isnan(df["E"])]
df = df.loc[~np.isinf(df["E"])]
dfg = df.groupby(["Results", "Model", "Dataset", "Ntargets", "Method", "Seed", "Num_graphs", "Context",
"Target_ts", "Sequential", "Sampling", "Epsilon", "Epsilon1"])
dfg_mean = dfg.mean().round(3)
dfg_std = dfg.std().round(3)
for k in ["aml", "K", "E", "dz_frac", "del_dz"]:
dfg_mean[k] = [str(x) + ", " + str(y) for x, y in zip(dfg_mean[k], dfg_std[k])]
if (len(datasets) > 1):
dfg_mean.to_csv("av_results/stats_{}_{}.csv".format(method, constraint), sep="\t")
dfg.mean().to_csv("av_results/mean_stats_{}_{}.csv".format(method, constraint))
dfg.std().to_csv("av_results/std_stats_{}_{}.csv".format(method, constraint))
else:
dfg_mean.to_csv("av_results/stats_{}_{}_{}.csv".format(method, datasets[0], constraint), sep="\t")
dfg.mean().to_csv("av_results/mean_stats_{}_{}_{}.csv".format(method, datasets[0], constraint))
dfg.std().to_csv("av_results/std_stats_{}_{}_{}.csv".format(method, datasets[0], constraint))