Skip to content

Commit 397b1f4

Browse files
authored
fix TOC contents link to fasttext wrapper
1 parent 64d6e0a commit 397b1f4

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ To quickly learn how to run cleanlab on your own data, first check out the [quic
1818
| 8 | [fine_tune_LLM](fine_tune_LLM/LLM_with_noisy_labels_cleanlab.ipynb) | Fine-tuning OpenAI language models with noisily labeled text data |
1919
| 9 | [cnn_mnist](cnn_mnist/find_label_errors_cnn_mnist.ipynb) | Finding label errors in MNIST image data with a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/mnist_pytorch.py). |
2020
| 10 | [huggingface_keras_imdb](huggingface_keras_imdb/huggingface_keras_imdb.ipynb) | CleanLearning for text classification with Keras Model + pretrained BERT backbone and Tensorflow Dataset. |
21-
| 11 | [fasttext_amazon_reviews](fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb) | Finding label errors in Amazon Reviews text dataset using a cleanlab-compatible [FastText model](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/models/fasttext.py). |
21+
| 11 | [fasttext_amazon_reviews](fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb) | Finding label errors in Amazon Reviews text dataset using a cleanlab-compatible [FastText model](fasttext_amazon_reviews/fasttext_wrapper.py). |
2222
| 12 | [multiannotator_cifar10](multiannotator_cifar10/multiannotator_cifar10.ipynb) | Iteratively improve consensus labels and trained classifier from data labeled by multiple annotators. |
2323
| 13 | [llm_evals_w_crowdlab](llm_evals_w_crowdlab/llm_evals_w_crowdlab.ipynb) | Reliable LLM Evaluation with multiple human/AI reviewers of varying competency (via CROWDLAB and LLM-as-judge GPT token probabilities). |
2424
| 14 | [active_learning_multiannotator](active_learning_multiannotator/active_learning.ipynb) | Improve a classifier model by iteratively collecting additional labels from data annotators. This active learning pipeline considers data labeled in batches by multiple (imperfect) annotators. |

0 commit comments

Comments
 (0)