|
13 | 13 | "import sys\n",
|
14 | 14 | "sys.path.insert(0, \"../\")\n",
|
15 | 15 | "\n",
|
16 |
| - "\n", |
17 | 16 | "from autogluon.vision import ImagePredictor, ImageDataset\n",
|
18 | 17 | "import numpy as np\n",
|
19 | 18 | "import pandas as pd\n",
|
20 |
| - "import pickle\n", |
21 |
| - "import datetime\n", |
22 |
| - "from pathlib import Path\n", |
23 |
| - "from sklearn.ensemble import IsolationForest\n", |
24 |
| - "from sklearn.model_selection import StratifiedKFold\n", |
25 |
| - "from sklearn.metrics import roc_auc_score\n", |
26 |
| - "from sklearn.model_selection import train_test_split\n", |
27 | 19 | "\n",
|
28 | 20 | "pd.set_option('display.max_rows', None)\n",
|
29 | 21 | "pd.set_option('display.max_columns', None)\n",
|
|
40 | 32 | },
|
41 | 33 | {
|
42 | 34 | "cell_type": "code",
|
43 |
| - "execution_count": 2, |
| 35 | + "execution_count": null, |
44 | 36 | "id": "5c9b59b4-c51c-4cdb-a958-46f227cdb5d8",
|
45 | 37 | "metadata": {},
|
46 | 38 | "outputs": [],
|
|
63 | 55 | },
|
64 | 56 | {
|
65 | 57 | "cell_type": "code",
|
66 |
| - "execution_count": 3, |
| 58 | + "execution_count": null, |
67 | 59 | "id": "cde63994-e833-4f87-93b6-e05b3c7ba479",
|
68 | 60 | "metadata": {},
|
69 | 61 | "outputs": [],
|
|
96 | 88 | },
|
97 | 89 | {
|
98 | 90 | "cell_type": "code",
|
99 |
| - "execution_count": 7, |
| 91 | + "execution_count": null, |
100 | 92 | "id": "1ae79a8d-bb68-46d5-b4b9-1f082da7d695",
|
101 | 93 | "metadata": {},
|
102 |
| - "outputs": [ |
103 |
| - { |
104 |
| - "data": { |
105 |
| - "text/html": [ |
106 |
| - "<div>\n", |
107 |
| - "<style scoped>\n", |
108 |
| - " .dataframe tbody tr th:only-of-type {\n", |
109 |
| - " vertical-align: middle;\n", |
110 |
| - " }\n", |
111 |
| - "\n", |
112 |
| - " .dataframe tbody tr th {\n", |
113 |
| - " vertical-align: top;\n", |
114 |
| - " }\n", |
115 |
| - "\n", |
116 |
| - " .dataframe thead th {\n", |
117 |
| - " text-align: right;\n", |
118 |
| - " }\n", |
119 |
| - "</style>\n", |
120 |
| - "<table border=\"1\" class=\"dataframe\">\n", |
121 |
| - " <thead>\n", |
122 |
| - " <tr style=\"text-align: right;\">\n", |
123 |
| - " <th></th>\n", |
124 |
| - " <th>image</th>\n", |
125 |
| - " <th>label</th>\n", |
126 |
| - " </tr>\n", |
127 |
| - " </thead>\n", |
128 |
| - " <tbody>\n", |
129 |
| - " <tr>\n", |
130 |
| - " <th>0</th>\n", |
131 |
| - " <td>/Data/cifar100_png/train/apple/0001.png</td>\n", |
132 |
| - " <td>0</td>\n", |
133 |
| - " </tr>\n", |
134 |
| - " <tr>\n", |
135 |
| - " <th>1</th>\n", |
136 |
| - " <td>/Data/cifar100_png/train/apple/0002.png</td>\n", |
137 |
| - " <td>0</td>\n", |
138 |
| - " </tr>\n", |
139 |
| - " <tr>\n", |
140 |
| - " <th>2</th>\n", |
141 |
| - " <td>/Data/cifar100_png/train/apple/0003.png</td>\n", |
142 |
| - " <td>0</td>\n", |
143 |
| - " </tr>\n", |
144 |
| - " <tr>\n", |
145 |
| - " <th>3</th>\n", |
146 |
| - " <td>/Data/cifar100_png/train/apple/0004.png</td>\n", |
147 |
| - " <td>0</td>\n", |
148 |
| - " </tr>\n", |
149 |
| - " <tr>\n", |
150 |
| - " <th>4</th>\n", |
151 |
| - " <td>/Data/cifar100_png/train/apple/0005.png</td>\n", |
152 |
| - " <td>0</td>\n", |
153 |
| - " </tr>\n", |
154 |
| - " </tbody>\n", |
155 |
| - "</table>\n", |
156 |
| - "</div>" |
157 |
| - ], |
158 |
| - "text/plain": [ |
159 |
| - " image label\n", |
160 |
| - "0 /Data/cifar100_png/train/apple/0001.png 0\n", |
161 |
| - "1 /Data/cifar100_png/train/apple/0002.png 0\n", |
162 |
| - "2 /Data/cifar100_png/train/apple/0003.png 0\n", |
163 |
| - "3 /Data/cifar100_png/train/apple/0004.png 0\n", |
164 |
| - "4 /Data/cifar100_png/train/apple/0005.png 0" |
165 |
| - ] |
166 |
| - }, |
167 |
| - "execution_count": 7, |
168 |
| - "metadata": {}, |
169 |
| - "output_type": "execute_result" |
170 |
| - } |
171 |
| - ], |
| 94 | + "outputs": [], |
172 | 95 | "source": [
|
173 | 96 | "# Check out a dataset\n",
|
174 | 97 | "cifar_100_train_dataset.head()"
|
|
0 commit comments