|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "d61e5d70-45e1-4223-b569-7a4c9247876d", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "%load_ext autoreload\n", |
| 11 | + "%autoreload 2\n", |
| 12 | + "\n", |
| 13 | + "import sys\n", |
| 14 | + "sys.path.insert(0, \"../\")\n", |
| 15 | + "\n", |
| 16 | + "from autogluon.vision import ImagePredictor, ImageDataset\n", |
| 17 | + "import numpy as np\n", |
| 18 | + "import pandas as pd\n", |
| 19 | + "\n", |
| 20 | + "pd.set_option('display.max_rows', None)\n", |
| 21 | + "pd.set_option('display.max_columns', None)\n", |
| 22 | + "pd.set_option('display.max_colwidth', None)" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "id": "bc2ebf60-4338-45ce-b9ce-e0d2b5cc7f0d", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "## Read data" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "id": "5c9b59b4-c51c-4cdb-a958-46f227cdb5d8", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# path to data\n", |
| 41 | + "CIFAR_10_DATA_PATH = \"/datasets/uly/ood-data/cifar10_png/\"\n", |
| 42 | + "CIFAR_100_DATA_PATH = \"/datasets/uly/ood-data/cifar100_png/\"\n", |
| 43 | + "MNIST_DATA_PATH = \"/datasets/uly/ood-data/mnist_png/\"\n", |
| 44 | + "FASHION_MNIST_DATA_PATH = \"/datasets/uly/ood-data/fashion_mnist_png/\"\n", |
| 45 | + "\n", |
| 46 | + "# read data from root folder\n", |
| 47 | + "cifar_10_train_dataset, _, cifar_10_test_dataset = ImageDataset.from_folders(root=CIFAR_10_DATA_PATH)\n", |
| 48 | + "cifar_100_train_dataset, _, cifar_100_test_dataset = ImageDataset.from_folders(root=CIFAR_100_DATA_PATH)\n", |
| 49 | + "mnist_train_dataset, _, mnist_test_dataset = ImageDataset.from_folders(root=MNIST_DATA_PATH)\n", |
| 50 | + "fashion_mnist_train_dataset, _, fashion_mnist_test_dataset = ImageDataset.from_folders(root=FASHION_MNIST_DATA_PATH)" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": null, |
| 56 | + "id": "cde63994-e833-4f87-93b6-e05b3c7ba479", |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "# dictionary to store data path and model\n", |
| 61 | + "\n", |
| 62 | + "data_model_dict = {\n", |
| 63 | + " \"cifar-10\": {\n", |
| 64 | + " \"train_data\": cifar_10_train_dataset,\n", |
| 65 | + " \"test_data\": cifar_10_test_dataset,\n", |
| 66 | + " },\n", |
| 67 | + " \"cifar-100\": {\n", |
| 68 | + " \"train_data\": cifar_100_train_dataset,\n", |
| 69 | + " \"test_data\": cifar_100_test_dataset,\n", |
| 70 | + " },\n", |
| 71 | + " \"mnist\": {\n", |
| 72 | + " \"train_data\": mnist_train_dataset,\n", |
| 73 | + " \"test_data\": mnist_test_dataset,\n", |
| 74 | + " },\n", |
| 75 | + " \"fashion-mnist\": {\n", |
| 76 | + " \"train_data\": fashion_mnist_train_dataset,\n", |
| 77 | + " \"test_data\": fashion_mnist_test_dataset,\n", |
| 78 | + " },\n", |
| 79 | + "}" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "code", |
| 84 | + "execution_count": null, |
| 85 | + "id": "8606e688", |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "# Create mini train dataset for testing\n", |
| 90 | + "def get_imbalanced_dataset(dataset, fractions):\n", |
| 91 | + " assert len(fractions) == dataset['label'].nunique()\n", |
| 92 | + "\n", |
| 93 | + " imbalanced_dataset = pd.DataFrame(columns=dataset.columns)\n", |
| 94 | + " print(imbalanced_dataset)\n", |
| 95 | + " for i in range(len(fractions)):\n", |
| 96 | + " idf = dataset[dataset['label'] == i].sample(frac=fractions[i])\n", |
| 97 | + " print(f'label {i} will have {idf.shape[0]} examples')\n", |
| 98 | + " imbalanced_dataset = pd.concat([imbalanced_dataset, idf], ignore_index=True)\n", |
| 99 | + " print(f'total imbalanced dataset length {imbalanced_dataset.shape[0]}')\n", |
| 100 | + " return imbalanced_dataset\n", |
| 101 | + "\n", |
| 102 | + "### Uncomment below to create imbalanced datasets\n", |
| 103 | + "\n", |
| 104 | + "# cifar_100_num_classes = len(cifar_100_train_dataset['label'].unique())\n", |
| 105 | + "# cifar_100_distribution = [0.15] * int(cifar_100_num_classes * 0.9) + [1.] * int(cifar_100_num_classes * 0.1)\n", |
| 106 | + "# cifar_100_train_dataset = get_imbalanced_dataset(cifar_100_train_dataset, cifar_100_distribution)\n", |
| 107 | + "# cifar_10_train_dataset = get_imbalanced_dataset(cifar_10_train_dataset,[0.09,0.09,0.09,0.09,1.,1.,0.09,0.09,1.,1.])\n", |
| 108 | + "# mnist_train_dataset = get_imbalanced_dataset(mnist_train_dataset,[0.09,0.09,0.09,0.09,1.,1.,0.09,0.09,1.,1.])\n", |
| 109 | + "# fashion_mnist_train_dataset = get_imbalanced_dataset(fashion_mnist_train_dataset,[0.09,0.09,0.09,0.09,1.,1.,0.09,0.09,1.,1.])" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "id": "1ae79a8d-bb68-46d5-b4b9-1f082da7d695", |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [], |
| 118 | + "source": [ |
| 119 | + "# Check out a dataset\n", |
| 120 | + "mnist_train_dataset.head()" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "markdown", |
| 125 | + "id": "cc26ea6d-954c-4810-a561-50badcdd992d", |
| 126 | + "metadata": {}, |
| 127 | + "source": [ |
| 128 | + "## Train model" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "code", |
| 133 | + "execution_count": null, |
| 134 | + "id": "b854ab3a", |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "!mkdir models # Create models folder to save model results into" |
| 139 | + ] |
| 140 | + }, |
| 141 | + { |
| 142 | + "cell_type": "code", |
| 143 | + "execution_count": null, |
| 144 | + "id": "abfa0bb0-aa32-47ac-a453-9ac5a2d91c96", |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [], |
| 147 | + "source": [ |
| 148 | + "%%time\n", |
| 149 | + "\n", |
| 150 | + "def train_ag_model(\n", |
| 151 | + " train_data,\n", |
| 152 | + " dataset_name,\n", |
| 153 | + " model_folder=\"./models/\", \n", |
| 154 | + " epochs=100,\n", |
| 155 | + " model=\"swin_base_patch4_window7_224\",\n", |
| 156 | + " time_limit=10*3600\n", |
| 157 | + "):\n", |
| 158 | + "\n", |
| 159 | + " # init model\n", |
| 160 | + " predictor = ImagePredictor(verbosity=0)\n", |
| 161 | + "\n", |
| 162 | + " MODEL_PARAMS = {\n", |
| 163 | + " \"model\": model,\n", |
| 164 | + " \"epochs\": epochs,\n", |
| 165 | + " }\n", |
| 166 | + "\n", |
| 167 | + " # run training\n", |
| 168 | + " predictor.fit(\n", |
| 169 | + " train_data=train_data,\n", |
| 170 | + " # tuning_data=,\n", |
| 171 | + " ngpus_per_trial=1,\n", |
| 172 | + " hyperparameters=MODEL_PARAMS,\n", |
| 173 | + " time_limit=time_limit,\n", |
| 174 | + " random_state=123,\n", |
| 175 | + " )\n", |
| 176 | + "\n", |
| 177 | + " # save model\n", |
| 178 | + " filename = f\"{model_folder}{model}_{dataset_name}.ag\"\n", |
| 179 | + " predictor.save(filename) \n", |
| 180 | + " \n", |
| 181 | + " return predictor" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "markdown", |
| 186 | + "id": "a2a4cfa4-f028-4236-a15d-e3d6e7df9f20", |
| 187 | + "metadata": {}, |
| 188 | + "source": [ |
| 189 | + "## Train model for all datasets" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "cell_type": "code", |
| 194 | + "execution_count": null, |
| 195 | + "id": "8bd6e11c-6856-4a4d-80b7-01b5635e5ffb", |
| 196 | + "metadata": {}, |
| 197 | + "outputs": [], |
| 198 | + "source": [ |
| 199 | + "model = \"swin_base_patch4_window7_224\"\n", |
| 200 | + "\n", |
| 201 | + "for key, data in data_model_dict.items():\n", |
| 202 | + "\n", |
| 203 | + " dataset = key\n", |
| 204 | + " train_dataset = data[\"train_data\"]\n", |
| 205 | + " \n", |
| 206 | + " print(f\"Dataset: {dataset}\")\n", |
| 207 | + " print(f\" Records: {train_dataset.shape}\")\n", |
| 208 | + " print(f\" Classes: {train_dataset.label.nunique()}\") \n", |
| 209 | + " \n", |
| 210 | + " _ = train_ag_model(train_dataset, dataset_name=dataset, model=model, epochs=100)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": null, |
| 216 | + "id": "ec1ed3e1", |
| 217 | + "metadata": {}, |
| 218 | + "outputs": [], |
| 219 | + "source": [] |
| 220 | + } |
| 221 | + ], |
| 222 | + "metadata": { |
| 223 | + "kernelspec": { |
| 224 | + "display_name": "Python 3 (ipykernel)", |
| 225 | + "language": "python", |
| 226 | + "name": "python3" |
| 227 | + }, |
| 228 | + "language_info": { |
| 229 | + "codemirror_mode": { |
| 230 | + "name": "ipython", |
| 231 | + "version": 3 |
| 232 | + }, |
| 233 | + "file_extension": ".py", |
| 234 | + "mimetype": "text/x-python", |
| 235 | + "name": "python", |
| 236 | + "nbconvert_exporter": "python", |
| 237 | + "pygments_lexer": "ipython3", |
| 238 | + "version": "3.8.10" |
| 239 | + } |
| 240 | + }, |
| 241 | + "nbformat": 4, |
| 242 | + "nbformat_minor": 5 |
| 243 | +} |
0 commit comments