-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdata_utils.py
364 lines (315 loc) · 15.5 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import json
import torch.nn.functional as F
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for token classification."""
def __init__(self, guid, words, labels, hp_labels):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.words = words
self.labels = labels
self.hp_labels = hp_labels
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_ids, full_label_ids, hp_label_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_ids = label_ids
self.full_label_ids = full_label_ids
self.hp_label_ids = hp_label_ids
def read_examples_from_file(data_dir, mode):
file_path = os.path.join(data_dir, "{}.json".format(mode))
guid_index = 1
examples = []
with open(file_path, 'r') as f:
data = json.load(f)
for item in data:
words = item["str_words"]
labels = item["tags"]
if "tags_hp" in labels:
hp_labels = item["tags_hp"]
else:
hp_labels = [None]*len(labels)
examples.append(InputExample(guid="%s-%d".format(mode, guid_index), words=words, labels=labels, hp_labels=hp_labels))
guid_index += 1
return examples
def convert_examples_to_features(
examples,
label_list,
max_seq_length,
tokenizer,
cls_token_at_end=False,
cls_token="[CLS]",
cls_token_segment_id=1,
sep_token="[SEP]",
sep_token_extra=False,
pad_on_left=False,
pad_token=0,
pad_token_segment_id=0,
pad_token_label_id=-100,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
show_exnum = -1,
):
""" Loads a data file into a list of `InputBatch`s
`cls_token_at_end` define the location of the CLS token:
- False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP]
- True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS]
`cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet)
"""
features = []
extra_long_samples = 0
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d", ex_index, len(examples))
tokens = []
label_ids = []
full_label_ids = []
hp_label_ids = []
for word, label, hp_label in zip(example.words, example.labels, example.hp_labels):
word_tokens = tokenizer.tokenize(word)
if(len(word_tokens) == 0):
continue
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label] + [pad_token_label_id] * (len(word_tokens) - 1))
hp_label_ids.extend([hp_label if hp_label is not None else pad_token_label_id] + [pad_token_label_id] * (len(word_tokens) - 1))
full_label_ids.extend([label] * len(word_tokens) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count = 3 if sep_token_extra else 2
if len(tokens) > max_seq_length - special_tokens_count:
tokens = tokens[: (max_seq_length - special_tokens_count)]
label_ids = label_ids[: (max_seq_length - special_tokens_count)]
hp_label_ids = hp_label_ids[: (max_seq_length - special_tokens_count)]
full_label_ids = full_label_ids[: (max_seq_length - special_tokens_count)]
extra_long_samples += 1
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
hp_label_ids += [pad_token_label_id]
full_label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
hp_label_ids += [pad_token_label_id]
full_label_ids += [pad_token_label_id]
segment_ids = [sequence_a_segment_id] * len(tokens)
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
hp_label_ids += [pad_token_label_id]
full_label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
label_ids = [pad_token_label_id] + label_ids
hp_label_ids = [pad_token_label_id] + hp_label_ids
full_label_ids = [pad_token_label_id] + full_label_ids
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
label_ids = ([pad_token_label_id] * padding_length) + label_ids
hp_label_ids = ([pad_token_label_id] * padding_length) + hp_label_ids
full_label_ids = ([pad_token_label_id] * padding_length) + full_label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
hp_label_ids += [pad_token_label_id] * padding_length
full_label_ids += [pad_token_label_id] * padding_length
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(hp_label_ids) == max_seq_length
assert len(full_label_ids) == max_seq_length
if ex_index < show_exnum:
logger.info("*** Example ***")
logger.info("guid: %s", example.guid)
logger.info("tokens: %s", " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
logger.info("label_ids: %s", " ".join([str(x) for x in label_ids]))
logger.info("hp_label_ids: %s", " ".join([str(x) for x in hp_label_ids]))
logger.info("full_label_ids: %s", " ".join([str(x) for x in full_label_ids]))
features.append(
InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids, full_label_ids=full_label_ids, hp_label_ids=hp_label_ids)
)
logger.info("Extra long example %d of %d", extra_long_samples, len(examples))
return features
def load_and_cache_examples(args, tokenizer, labels, pad_token_label_id, mode, remove_labels=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Load data features from cache or dataset file
cached_features_file = os.path.join(
args.data_dir,
"cached_{}_{}_{}".format(
mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
),
)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
examples = read_examples_from_file(args.data_dir, mode)
features = convert_examples_to_features(
examples,
labels,
args.max_seq_length,
tokenizer,
cls_token_at_end=bool(args.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=bool(args.model_type in ["roberta"]),
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(args.model_type in ["xlnet"]),
# pad on the left for xlnet
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
pad_token_label_id=pad_token_label_id,
)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
all_full_label_ids = torch.tensor([f.full_label_ids for f in features], dtype=torch.long)
all_hp_label_ids = torch.tensor([f.hp_label_ids for f in features], dtype=torch.long)
if remove_labels:
all_full_label_ids.fill_(pad_token_label_id)
all_hp_label_ids.fill_(pad_token_label_id)
all_ids = torch.tensor([f for f in range(len(features))], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_full_label_ids, all_hp_label_ids, all_ids)
return dataset
def get_labels(path = None):
if path and os.path.exists(path + "tag_to_id.json"):
labels = []
with open(path + "tag_to_id.json", "r") as f:
data = json.load(f)
for l, _ in data.items():
labels.append(l)
if "O" not in labels:
labels = ["O"] + labels
return labels
else:
return ["O", "B-LOC", "B-ORG", "B-PER", "B-MISC", "I-PER", "I-MISC", "I-ORG", "I-LOC"]
def tag_to_id(path = None):
if path and os.path.exists(path + "tag_to_id.json"):
with open(path + "tag_to_id.json", 'r') as f:
data = json.load(f)
return data
else:
return {"O": 0, "B-LOC": 1, "B-ORG": 2, "B-PER": 3, "B-MISC": 4, "I-PER": 5, "I-MISC": 6, "I-ORG": 7, "I-LOC": 8}
def get_chunk_type(tok, idx_to_tag):
"""
The function takes in a chunk ("B-PER") and then splits it into the tag (PER) and its class (B)
as defined in BIOES
Args:
tok: id of token, ex 4
idx_to_tag: dictionary {4: "B-PER", ...}
Returns:
tuple: "B", "PER"
"""
tag_name = idx_to_tag[tok]
tag_class = tag_name.split('-')[0]
tag_type = tag_name.split('-')[-1]
return tag_class, tag_type
def get_chunks(seq, tags):
"""Given a sequence of tags, group entities and their position
Args:
seq: [4, 4, 0, 0, ...] sequence of labels
tags: dict["O"] = 4
Returns:
list of (chunk_type, chunk_start, chunk_end)
Example:
seq = [4, 5, 0, 3]
tags = {"B-PER": 4, "I-PER": 5, "B-LOC": 3}
result = [("PER", 0, 2), ("LOC", 3, 4)]
"""
default = tags["O"]
idx_to_tag = {idx: tag for tag, idx in tags.items()}
chunks = []
chunk_type, chunk_start = None, None
for i, tok in enumerate(seq):
if tok == default and chunk_type is not None:
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = None, None
elif tok != default:
tok_chunk_class, tok_chunk_type = get_chunk_type(tok, idx_to_tag)
if chunk_type is None:
chunk_type, chunk_start = tok_chunk_type, i
elif tok_chunk_type != chunk_type or tok_chunk_class == "B":
chunk = (chunk_type, chunk_start, i)
chunks.append(chunk)
chunk_type, chunk_start = tok_chunk_type, i
else:
pass
if chunk_type is not None:
chunk = (chunk_type, chunk_start, len(seq))
chunks.append(chunk)
return chunks
if __name__ == '__main__':
save(args)