@@ -2112,17 +2112,6 @@ class RandomTreesEmbedding(BaseForest):
2112
2112
and add more estimators to the ensemble, otherwise, just fit a whole
2113
2113
new forest. See :term:`the Glossary <warm_start>`.
2114
2114
2115
- max_samples : int or float, default=None
2116
- If bootstrap is True, the number of samples to draw from X
2117
- to train each base estimator.
2118
-
2119
- - If None (default), then draw `X.shape[0]` samples.
2120
- - If int, then draw `max_samples` samples.
2121
- - If float, then draw `max_samples * X.shape[0]` samples. Thus,
2122
- `max_samples` should be in the interval `(0, 1)`.
2123
-
2124
- .. versionadded:: 0.22
2125
-
2126
2115
Attributes
2127
2116
----------
2128
2117
estimators_ : list of DecisionTreeClassifier
@@ -2154,8 +2143,7 @@ def __init__(self,
2154
2143
n_jobs = None ,
2155
2144
random_state = None ,
2156
2145
verbose = 0 ,
2157
- warm_start = False ,
2158
- max_samples = None ):
2146
+ warm_start = False ):
2159
2147
super ().__init__ (
2160
2148
base_estimator = ExtraTreeRegressor (),
2161
2149
n_estimators = n_estimators ,
@@ -2170,7 +2158,7 @@ def __init__(self,
2170
2158
random_state = random_state ,
2171
2159
verbose = verbose ,
2172
2160
warm_start = warm_start ,
2173
- max_samples = max_samples )
2161
+ max_samples = None )
2174
2162
2175
2163
self .max_depth = max_depth
2176
2164
self .min_samples_split = min_samples_split
0 commit comments