17
17
safe_mask )
18
18
from ..utils .extmath import safe_sparse_dot , row_norms
19
19
from ..utils .validation import check_is_fitted
20
+ from ..utils .validation import _deprecate_positional_args
20
21
from ._base import SelectorMixin
21
22
22
23
@@ -419,9 +420,9 @@ class SelectPercentile(_BaseFilter):
419
420
SelectFwe: Select features based on family-wise error rate.
420
421
GenericUnivariateSelect: Univariate feature selector with configurable mode.
421
422
"""
422
-
423
- def __init__ (self , score_func = f_classif , percentile = 10 ):
424
- super ().__init__ (score_func )
423
+ @ _deprecate_positional_args
424
+ def __init__ (self , score_func = f_classif , * , percentile = 10 ):
425
+ super ().__init__ (score_func = score_func )
425
426
self .percentile = percentile
426
427
427
428
def _check_params (self , X , y ):
@@ -503,9 +504,9 @@ class SelectKBest(_BaseFilter):
503
504
SelectFwe: Select features based on family-wise error rate.
504
505
GenericUnivariateSelect: Univariate feature selector with configurable mode.
505
506
"""
506
-
507
- def __init__ (self , score_func = f_classif , k = 10 ):
508
- super ().__init__ (score_func )
507
+ @ _deprecate_positional_args
508
+ def __init__ (self , score_func = f_classif , * , k = 10 ):
509
+ super ().__init__ (score_func = score_func )
509
510
self .k = k
510
511
511
512
def _check_params (self , X , y ):
@@ -582,9 +583,9 @@ class SelectFpr(_BaseFilter):
582
583
SelectFwe: Select features based on family-wise error rate.
583
584
GenericUnivariateSelect: Univariate feature selector with configurable mode.
584
585
"""
585
-
586
- def __init__ (self , score_func = f_classif , alpha = 5e-2 ):
587
- super ().__init__ (score_func )
586
+ @ _deprecate_positional_args
587
+ def __init__ (self , score_func = f_classif , * , alpha = 5e-2 ):
588
+ super ().__init__ (score_func = score_func )
588
589
self .alpha = alpha
589
590
590
591
def _get_support_mask (self ):
@@ -648,9 +649,9 @@ class SelectFdr(_BaseFilter):
648
649
SelectFwe: Select features based on family-wise error rate.
649
650
GenericUnivariateSelect: Univariate feature selector with configurable mode.
650
651
"""
651
-
652
- def __init__ (self , score_func = f_classif , alpha = 5e-2 ):
653
- super ().__init__ (score_func )
652
+ @ _deprecate_positional_args
653
+ def __init__ (self , score_func = f_classif , * , alpha = 5e-2 ):
654
+ super ().__init__ (score_func = score_func )
654
655
self .alpha = alpha
655
656
656
657
def _get_support_mask (self ):
@@ -711,9 +712,9 @@ class SelectFwe(_BaseFilter):
711
712
SelectFdr: Select features based on an estimated false discovery rate.
712
713
GenericUnivariateSelect: Univariate feature selector with configurable mode.
713
714
"""
714
-
715
- def __init__ (self , score_func = f_classif , alpha = 5e-2 ):
716
- super ().__init__ (score_func )
715
+ @ _deprecate_positional_args
716
+ def __init__ (self , score_func = f_classif , * , alpha = 5e-2 ):
717
+ super ().__init__ (score_func = score_func )
717
718
self .alpha = alpha
718
719
719
720
def _get_support_mask (self ):
@@ -761,7 +762,7 @@ class GenericUnivariateSelect(_BaseFilter):
761
762
>>> X, y = load_breast_cancer(return_X_y=True)
762
763
>>> X.shape
763
764
(569, 30)
764
- >>> transformer = GenericUnivariateSelect(chi2, 'k_best', param=20)
765
+ >>> transformer = GenericUnivariateSelect(chi2, mode= 'k_best', param=20)
765
766
>>> X_new = transformer.fit_transform(X, y)
766
767
>>> X_new.shape
767
768
(569, 20)
@@ -786,8 +787,9 @@ class GenericUnivariateSelect(_BaseFilter):
786
787
'fdr' : SelectFdr ,
787
788
'fwe' : SelectFwe }
788
789
789
- def __init__ (self , score_func = f_classif , mode = 'percentile' , param = 1e-5 ):
790
- super ().__init__ (score_func )
790
+ @_deprecate_positional_args
791
+ def __init__ (self , score_func = f_classif , * , mode = 'percentile' , param = 1e-5 ):
792
+ super ().__init__ (score_func = score_func )
791
793
self .mode = mode
792
794
self .param = param
793
795
0 commit comments