-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGradient Descent.py
86 lines (65 loc) · 2.19 KB
/
Gradient Descent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as sm
import statsmodels.api as stats
from sklearn.linear_model import LinearRegression
from mpl_toolkits.mplot3d import Axes3D
# Read in data file
df1 = pd.read_excel("Master NFL File.xlsx")
# Select training data
Temp_Season = df1[df1.Season < 2014]
df = Temp_Season[['Win_Percentage', 'Offensive_Yards_Gained']]
# Normaliztion
df = df.apply(lambda x: (x - np.mean(x)) / (np.std(x)))
# Inspect data frame
df.head()
# Calculate error
def computewinpercentage(X, y, theta):
inner = np.power(((X * theta.T) - y), 2)
return np.sum(inner) / (2 * len(X))
# Insert ones column
df.insert(0, 'Ones', 1)
# Select Dependent and Independent Matrixes
cols = df.shape[1]
X = df.iloc[:,[0,2]]
y = df.iloc[:,[1]]
X = np.matrix(X.values)
y = np.matrix(y.values)
theta = np.matrix(np.array([0,0]))
# Gradient Descent
def gradientDescent(X, y, theta, alpha, iterations):
temp = np.matrix(np.zeros(theta.shape))
parameters = int(theta.ravel().shape[1])
win = np.zeros(iterations)
for i in range(iterations):
error = (X * theta.T) - y
for j in range(parameters):
term = np.multiply(error, X[:,j])
temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term))
theta = temp
win[i] = computewinpercentage(X, y, theta)
return theta, win
# Select alpha and iterations
alpha = 0.01
iterations = 1000
g, win = gradientDescent(X, y, theta, alpha, iterations)
computewinpercentage(X, y, g)
# Plot best fit & iterations
x = np.linspace(df['Win_Percentage'].min(), df['Win_Percentage'].max(), 100)
f = g[0, 0] + (g[0, 1] * x)
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(x, f, 'r', label='Prediction')
ax.scatter(df['Win_Percentage'], df.Offensive_Yards_Gained, label='Traning Data')
ax.legend(loc=2)
ax.set_xlabel('Win Percentage')
ax.set_ylabel('Offensive Yards')
ax.set_title('Win Percentage vs. Offensive Yards')
fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iterations), win, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Wins')
ax.set_title('Error vs. Training Epoch')
#