-
Notifications
You must be signed in to change notification settings - Fork 124
Better syntax support
Clojure syntax-quote leaves much to be desired when doing the symbolic manipulations that are common with the nominal functionality of core.logic. For example consider the following alphaProlog fragment program for describing the operational semantics of the pi-calculus:
step (tau P) tau_a P.
step (sum (P, Q)) A (P') :- step P A P'.
step (sum (P, Q)) A (Q') :- step Q A Q'.
step (par (P, Q)) A (par (P', Q)) :- step P A P'.
step (par (P, Q)) A (par (P, Q')) :- step Q A Q'.
step (par (ina,P)) tau_a P.
step (par (P,ina)) tau_a P.
step (par (P,Q)) tau_a (res (n\par(P',Q')))
:- step' P (n\in_a(X,n)) (n\P'), step' Q (n\out_a(X,n)) (n\Q').
step (par (P,Q)) tau_a (res (n\par(P',Q')))
:- step' P (n\out_a(X,n)) (n\P'), step' Q (n\in_a(X,n)) (n\Q').
step (res (n\P)) A (res (n\P')) :- step P A P', n # A.
step (out (X, Y, P)) (out_a (X, Y)) P.
step (par (P,Q)) tau_a (par (P'',Q')) :-
step' P (y\in_a(X,Y)) (y\P'),
step Q (out_a(X,Z)) Q',
rename (y\P',Z,P'').
step (par (P,Q)) tau_a (par (P',Q'')) :-
step' Q (y\in_a(X,y)) (y\Q'),
step P (out_a(X,Z)) P',
rename (y\Q',Z,Q'').
step (rep P) A P' :- step (par (P, (rep P))) A P'.
Nada Amin's translation to core.logic currently looks like the following
(defn stepo [p a q]
(conde
[(== `(~'tau ~q) p)
(== a 'tau_a)]
[(fresh [p1 p2]
(== `(~'sum ~p1 ~p2) p)
(stepo p1 a q))]
[(fresh [p1 p2]
(== `(~'sum ~p1 ~p2) p)
(stepo p2 a q))]
[(fresh [p1 p2 q1]
(== `(~'par ~p1 ~p2) p)
(== `(~'par ~q1 ~p2) q)
(stepo p1 a q1))]
[(fresh [p1 p2 q2]
(== `(~'par ~p1 ~p2) p)
(== `(~'par ~p1 ~q2) q)
(stepo p2 a q2))]
[(== `(~'par ~'ina ~q) p)
(== a 'tau_a)]
[(== `(~'par ~q ~'ina) p)
(== a 'tau_a)]
[(fresh [p1 p2 q1 q2 x]
(nom/fresh [n]
(== `(~'par ~p1 ~p2) p)
(== a 'tau_a)
(== `(~'res ~(nom/tie n `(~'par ~q1 ~q2))) q)
(b-stepo p1 (nom/tie n `(~'in_a ~x ~n)) (nom/tie n q1))
(b-stepo p2 (nom/tie n `(~'out_a ~x ~n)) (nom/tie n q2))))]
[(fresh [p1 p2 q1 q2 x]
(nom/fresh [n]
(== `(~'par ~p1 ~p2) p)
(== a 'tau_a)
(== `(~'res ~(nom/tie n `(~'par ~q1 ~q2))) q)
(b-stepo p1 (nom/tie n `(~'out_a ~x ~n)) (nom/tie n q1))
(b-stepo p2 (nom/tie n `(~'in_a ~x ~n)) (nom/tie n q2))))]
[(fresh [p0 q0]
(nom/fresh [n]
(== `(~'res ~(nom/tie n p0)) p)
(== `(~'res ~(nom/tie n q0)) q)
(stepo p0 a q0)
(nom/hash n a)))]
[(fresh [x y]
(== `(~'out ~x ~y ~q) p)
(== a `(~'out_a ~x ~y)))]
[(fresh [p1 p2 q1 q2 r1 x y z]
(nom/fresh [y]
(== `(~'par ~p1 ~p2) p)
(== a 'tau_a)
(== `(~'par ~r1 ~q1) q)
(b-stepo p1 (nom/tie y `(~'in_a ~x ~y)) (nom/tie y q1))
(stepo p2 `(~'out_a ~x ~z) q2)
(renameo y z q1 r1)))]
[(fresh [p1 p2 q1 q2 r2 x z]
(nom/fresh [y]
(== `(~'par ~p1 ~p2) p)
(== a 'tau_a)
(== `(~'par ~q1 ~r2) q)
(b-stepo p2 (nom/tie y `(~'in_a ~x ~y)) (nom/tie y q2))
(stepo p1 `(~'out_a ~x ~z) q1)
(renameo y z q2 r2)))]))
This can be clean up with the defne
pattern matching syntax but it
is not enough. Something which could take it further would be support
for a letsyn
macro which supports some of the same behavior as
defne
. In order for this to really work for letfn
and defne
should support simple extensible parsing.
A cleaned up pi-calculus step relation might look something like the following:
(defne stepo [p a q]
(['(tau ~q) 'tau_a _])
(['(sum ~p1 ~p2)] (stepo p1 a q))
(['(par ~p1 ~p2)] (stepo p2 a q))
(['(par ~p1 ~p2) _ '(par ~q1 ~p2)] (stepo p1 a q1))
(['(par ~p1 ~p2) _ '(par ~p1 ~q2)] (stepo p2 a q2))
(['(par ina ~q) 'tau_a _])
(['(par ~q ina) 'tau_a _])
(['(par ~p1 ~p2) 'tau_a '(res (nom/tie n (par ~q1 ~q2)))]
(letsyn [t0 (nom/tie n (in_a ~x ~n))
t1 (nom/tie n ~q1)
t2 (nom/tie n (out_a ~x ~n))
t3 (nom/tie n ~q2)]
(stepo' p1 t0 t1)
(stepo' p2 t2 t3)))
(['(par ~p1 ~p2) 'tau_a '(res (nom/tie ~(nom n) (par ~q1 ~q2)))]
(letsyn [t0 (nom/tie n (out_a ~x ~n))
t1 (nom/tie n ~q1)
t2 (nom/tie n (in_a ~x ~n))
t3 (nom/tie n ~q2)]
(stepo' p1 t0 t1)
(stepo' p2 t2 t3)))
(['(res (nom/tie n p0)) _ '(res (nom/tie n q0))]
(stepo p0 a q0)
(nom/hash n a))
(['(out ~x ~y ~q) '(out_a ~x ~y) _])
(['(par ~p1 ~p2) 'tau_a '(par ~r1 ~q1)]
(letsyn [t0 (nom/tie y (in_a ~x ~y))
t1 (nomt/tie y ~q1)
t2 (out_a ~x ~z)]
(stepo' p1 t0 t1)
(stepo p2 t2 q2)
(renameo y z q1 r1)))
(['(par ~p1 ~p2) 'tau_a '(par ~q1 ~r2)]
(letsyn [t0 (nom/tie y (in_a ~x ~y))
t1 (nom/tie y ~q2)
t2 (out_a ~x ~z)]
(stepo' p2 t0 t1)
(stepo p1 t2 q1)
(renameo y z q2 r2))))
This begins to approach the brevity and clarity of the alphaProlog implementation.