-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadsense.py
executable file
·206 lines (172 loc) · 6.18 KB
/
adsense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/python3
import matplotlib.pyplot as plt
import numpy as np
import os
import pathlib
import datetime
from dateutil import parser
import time
debug = 1
home = str(pathlib.Path.home())
logfile = os.path.join(home, "adsense.txt")
# google accumulates days relative to the pacific time zone, so define your
# offset here. (i.e. central time zone = 2 * (1/24)
tzoffset = 0 * (1.0 / 24.0) # sure seems like reporting is in local tz
#tzoffset = 2 * (1.0 / 24.0)
# month zero has zero days. :-)
MDAYS = [0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 ]
# return the day of the week from the date_index
def day_of_week(date_index):
year = int(date_index[0:4])
mon = int(date_index[4:6])
day = int(date_index[6:8])
dow = datetime.date(year, mon, day).weekday()
return dow
# return a simple date index
def date_index(unix_sec=None):
if not unix_sec:
result = time.localtime()
else:
result = time.localtime(unix_sec)
return "%04d%02d%02d" % (result.tm_year, result.tm_mon, result.tm_mday)
def gen_func( coeffs, min, max, steps ):
if abs(max-min) < 0.0001:
max = min + 0.1
xvals = []
yvals = []
step = (max - min) / steps
func = np.poly1d(coeffs)
for x in np.arange(min, max+step, step):
y = func(x)
xvals.append(x)
yvals.append(y)
return xvals, yvals
today_dow = day_of_week(date_index())
print("Today's day of week:", today_dow)
fit = None
if os.path.exists(logfile):
print("Reading log file:", logfile)
f = open(logfile, 'r')
# pass one: daily totals
first_day = None
day_totals = {}
for line in f:
(index_today, index_yesterday, dayperc, today, yesterday,
last7, thismo, last28) = line.split(',')
if not first_day:
first_day = index_today
day_totals[index_yesterday] = float(yesterday)
#print( day_of_week(index_today) )
firstday_str = first_day[:4] + "-" + first_day[4:6] + "-" + first_day[6:8]
start_day = parser.parse(firstday_str)
# pass two: progress
data = []
averages = {}
f.seek(0)
for line in f:
(index_today, index_yesterday, dayperc, today, yesterday,
last7, thismo, last28) = line.rstrip().split(',')
#line = "%s,%s,%.4f,%s,%s,%s,%s,%s" \
# % (index_today, index_yesterday, float(dayperc)-tzoffset, today, yesterday,
# last7, thismo, last28)
#print(line.rstrip())
if index_today in day_totals:
if day_totals[index_today] > 0:
if day_of_week(index_today) == today_dow:
amt_perc = float(today) / day_totals[index_today]
data.append( [float(dayperc), amt_perc] )
today_str = index_today[:4] + "-" + index_today[4:6] + "-" + index_today[6:8]
today_day = parser.parse(today_str)
diff = (today_day - start_day).days
averages[diff] = [ diff, float(last7)/7, float(last28)/28 ]
f.close()
if debug >= 2:
print(day_totals)
print(data)
# try keeping only most recent 'n' data points
data = data[-365:]
# complete end points
data.insert(0, [0,0])
data.append([1+tzoffset,1])
if False:
# encourage the plot to go through [0,0] and [1,1]
weights = np.ones(len(data))
weights[0] = len(data)
weights[-1] = len(data)
else:
# weight more recent data more
weights = np.ones(len(data))
for i in range(len(data)):
weights[i] = i
weights[0] = len(data)*len(data)
weights[-1] = len(data)*len(data)
# fit and plot the progress data
data = np.array(data)
fit, res, _, _, _ = np.polyfit( data[:,0], data[:,1], 4, w=weights, full=True )
xvals, yvals = gen_func(fit, 0.0, 1.0, 100)
plt.figure()
plt.title("Progress")
plt.xlabel("Percent of Day")
plt.ylabel("Percent of Revenue")
plt.plot(data[:,0], data[:,1],'b.',label='Raw data')
plt.plot(xvals, yvals,'r',label='Fit')
# plot the rolling averages (convert dict to array)
avg = []
for key in sorted(averages):
avg.append(averages[key])
avg = np.array(avg)
plt.figure()
plt.title("Rolling Averages")
plt.xlabel("Days")
plt.ylabel("Daily Revenue")
plt.grid('on')
plt.plot(avg[:,0], avg[:,1], label="7 Day")
plt.plot(avg[:,0], avg[:,2], label="28 Day")
plt.legend()
plt.show()
result = time.localtime()
print("Enter revenue:")
today = float(input(" Today so far: "))
yesterday = float(input(" Yesterday: "))
last7 = float(input(" Last 7 days: "))
thismo = float(input(" This month: "))
last28 = float(input(" Last 28 days: "))
print("Today's date index:", date_index())
print("Yesterday's date index:", date_index(time.time() - 86400))
dayperc = (result.tm_hour + (result.tm_min / 60)) / 24.0 - tzoffset
if dayperc < 0.0:
dayperc = 0.0
dayest = today / dayperc
# append data to log file
print("Saving raw data..")
f = open(logfile, 'a')
line = "%s,%s,%.4f,%.2f,%.2f,%.2f,%.2f,%.2f" \
% (date_index(), date_index(time.time() - 86400), dayperc, today, yesterday,
last7, thismo, last28)
f.write(line + "\n")
f.close()
monthperc = (result.tm_mday - 1 + dayperc) / MDAYS[result.tm_mon]
ave7 = last7 / 7.0
ave28 = last28 / 28.0
avemo = thismo / (result.tm_mday -1 + dayperc)
print(" average 7 = $%.2f 28 = $%.2f mo = $%.2f" % (ave7, ave28, avemo))
aveday = (2 * ave7 + 1 * avemo + 7 * ave28) / 10
print(" weighted average day = %.3f" % aveday)
if not fit is None:
func = np.poly1d(fit)
fit_perc = func(dayperc)
print("fit perc: %.3f" % fit_perc)
fit_est = today / fit_perc
if debug >= 2:
print(" month = ", result.tm_mon, ", days this month = ", MDAYS[result.tm_mon])
remmon = 1.0 - monthperc
monthest = thismo + remmon * aveday * MDAYS[result.tm_mon]
if debug >= 1:
print(" day %% = %.4f" % dayperc)
print( " month %% = %.4f" % monthperc)
#print("Today's total (est by time) = $%.2f" % dayest)
if not fit is None:
print("Today's total (est by fit) = $%.2f" % fit_est)
print("This month's total (est) = $%.2f" % monthest)
google_sluff_factor = 0.98 # last time 0.97 was too low
print("Estimated google revenue = $%.0f" % (int((monthest*google_sluff_factor)/10)*10))