@@ -93,7 +93,8 @@ def test_geo_reindex(self):
93
93
def test_update_sensor (self ):
94
94
"""Tests that the sensors are properly updated."""
95
95
outputs = {}
96
- for geo in ["county" , "state" , "hhs" , "nation" ]:
96
+ geos = ["county" , "state" , "hhs" , "nation" ]
97
+ for geo in geos :
97
98
td = TemporaryDirectory ()
98
99
su_inst = CHCSensorUpdator (
99
100
"03-01-2020" ,
@@ -116,17 +117,17 @@ def test_update_sensor(self):
116
117
"den" : [30 , 50 , 50 , 10 , 1 , 5 , 5 , 50 , 50 , 50 , 0 , 0 , 0 ] * 2 ,
117
118
"date" : list (pd .date_range ("20200301" , "20200313" )) * 2 }).set_index (
118
119
["fips" , "date" ])
120
+ # breakpoint()
119
121
su_inst .update_sensor (small_test_data , td .name )
120
122
for f in os .listdir (td .name ):
121
123
outputs [f ] = pd .read_csv (os .path .join (td .name , f ))
122
124
assert len (os .listdir (td .name )) == len (su_inst .sensor_dates ),\
123
125
f"failed { geo } update sensor test"
124
126
td .cleanup ()
125
- assert outputs ["20200319_county_smoothed_outpatient_covid.csv" ].empty
126
- assert outputs ["20200319_state_smoothed_outpatient_covid.csv" ].empty
127
- assert outputs ["20200319_hhs_smoothed_outpatient_covid.csv" ].empty
128
- assert outputs ["20200319_nation_smoothed_outpatient_covid.csv" ].empty
129
-
127
+ value_columns = ["val" , "se" , "direction" , "sample_size" ]
128
+ for geo in geos :
129
+ assert np .isnan (outputs ["20200319_" + geo + "_smoothed_outpatient_covid.csv" ][value_columns ]).all ().all ()
130
+ assert outputs ["20200319_" + geo + "_smoothed_outpatient_covid.csv" ]["missing_val" ].eq (3 ).all ()
130
131
131
132
class TestWriteToCsv :
132
133
"""Tests for writing output files to CSV."""
@@ -161,8 +162,9 @@ def test_write_to_csv_results(self):
161
162
expected_name = "20200502_geography_name_of_signal.csv"
162
163
assert exists (join (td .name , expected_name ))
163
164
output_data = pd .read_csv (join (td .name , expected_name ))
165
+ expected_columns = ["geo_id" , "val" , "se" , "direction" , "sample_size" , "missing_val" , "missing_se" , "missing_sample_size" ]
164
166
assert (
165
- output_data .columns == [ "geo_id" , "val" , "se" , "direction" , "sample_size" ]
167
+ output_data .columns == expected_columns
166
168
).all ()
167
169
assert (output_data .geo_id == ["a" , "b" ]).all ()
168
170
assert np .array_equal (output_data .val .values , np .array ([0.1 , 1 ]))
@@ -175,11 +177,12 @@ def test_write_to_csv_results(self):
175
177
expected_name = "20200503_geography_name_of_signal.csv"
176
178
assert exists (join (td .name , expected_name ))
177
179
output_data = pd .read_csv (join (td .name , expected_name ))
180
+
178
181
assert (
179
- output_data .columns == [ "geo_id" , "val" , "se" , "direction" , "sample_size" ]
182
+ output_data .columns == expected_columns
180
183
).all ()
181
- assert (output_data .geo_id == ["a" ]).all ()
182
- assert np .array_equal (output_data .val .values , np .array ([0.5 ]) )
184
+ assert (output_data .geo_id == ["a" , "b" ]).all ()
185
+ assert np .array_equal (output_data .val .values , np .array ([0.5 , np . nan ]), equal_nan = True )
183
186
assert np .isnan (output_data .se .values ).all ()
184
187
assert np .isnan (output_data .direction .values ).all ()
185
188
assert np .isnan (output_data .sample_size .values ).all ()
@@ -188,7 +191,7 @@ def test_write_to_csv_results(self):
188
191
assert exists (join (td .name , expected_name ))
189
192
output_data = pd .read_csv (join (td .name , expected_name ))
190
193
assert (
191
- output_data .columns == [ "geo_id" , "val" , "se" , "direction" , "sample_size" ]
194
+ output_data .columns == expected_columns
192
195
).all ()
193
196
assert (output_data .geo_id == ["a" , "b" ]).all ()
194
197
assert np .array_equal (output_data .val .values , np .array ([1.5 , 3 ]))
@@ -224,13 +227,13 @@ def test_write_to_csv_with_se_results(self):
224
227
225
228
td = TemporaryDirectory ()
226
229
write_to_csv (res0 , True , "name_of_signal" , td .name )
227
-
228
230
# check outputs
229
231
expected_name = "20200502_geography_name_of_signal.csv"
232
+ expected_columns = ["geo_id" , "val" , "se" , "direction" , "sample_size" , "missing_val" , "missing_se" , "missing_sample_size" ]
230
233
assert exists (join (td .name , expected_name ))
231
234
output_data = pd .read_csv (join (td .name , expected_name ))
232
235
assert (
233
- output_data .columns == [ "geo_id" , "val" , "se" , "direction" , "sample_size" ]
236
+ output_data .columns == expected_columns
234
237
).all ()
235
238
assert (output_data .geo_id == ["a" , "b" ]).all ()
236
239
assert np .array_equal (output_data .val .values , np .array ([0.1 , 1 ]))
0 commit comments