@@ -155,7 +155,10 @@ def test_process_window(self, tmp_path):
155
155
'geo_id' : [1053 , 1073 ],
156
156
'val' : [0.04 , 0.14 ],
157
157
'se' : [0.02 , 0.10 ],
158
- 'sample_size' : [2 , 2 ]
158
+ 'sample_size' : [2 , 2 ],
159
+ 'missing_val' : [0 , 0 ],
160
+ 'missing_se' : [0 , 0 ],
161
+ 'missing_sample_size' : [0 , 0 ],
159
162
})
160
163
actual = pd .read_csv (
161
164
export_dir / '20200214_county_completely_home_prop.csv' )
@@ -183,49 +186,73 @@ def test_process(self, tmp_path):
183
186
'geo_id' : ['al' , 'ga' ],
184
187
'val' : [6 , 3.5 ],
185
188
'se' : [None , 0.5 ],
186
- 'sample_size' : [1 , 2 ]
189
+ 'sample_size' : [1 , 2 ],
190
+ 'missing_val' : [0 , 0 ],
191
+ 'missing_se' : [4 , 0 ],
192
+ 'missing_sample_size' : [0 , 0 ],
187
193
}),
188
194
'completely_home_prop' : pd .DataFrame (data = {
189
195
'geo_id' : ['al' , 'ga' ],
190
196
'val' : [0.15 , 0.055 ],
191
197
'se' : [None , 0.005 ],
192
- 'sample_size' : [1 , 2 ]
198
+ 'sample_size' : [1 , 2 ],
199
+ 'missing_val' : [0 , 0 ],
200
+ 'missing_se' : [4 , 0 ],
201
+ 'missing_sample_size' : [0 , 0 ],
193
202
}),
194
203
'part_time_work_prop' : pd .DataFrame (data = {
195
204
'geo_id' : ['al' , 'ga' ],
196
205
'val' : [0.35 , 0.055 ],
197
206
'se' : [None , 0.005 ],
198
- 'sample_size' : [1 , 2 ]
207
+ 'sample_size' : [1 , 2 ],
208
+ 'missing_val' : [0 , 0 ],
209
+ 'missing_se' : [4 , 0 ],
210
+ 'missing_sample_size' : [0 , 0 ],
199
211
}),
200
212
'full_time_work_prop' : pd .DataFrame (data = {
201
213
'geo_id' : ['al' , 'ga' ],
202
214
'val' : [0.45 , 0.055 ],
203
215
'se' : [None , 0.005 ],
204
- 'sample_size' : [1 , 2 ]
216
+ 'sample_size' : [1 , 2 ],
217
+ 'missing_val' : [0 , 0 ],
218
+ 'missing_se' : [4 , 0 ],
219
+ 'missing_sample_size' : [0 , 0 ],
205
220
}),
206
221
'median_home_dwell_time_7dav' : pd .DataFrame (data = {
207
222
'geo_id' : ['al' , 'ga' , 'pa' ],
208
223
'val' : [4.5 , 3.5 , 7.5 ],
209
224
'se' : [1.5 , 0.5 , 0.5 ],
210
- 'sample_size' : [2 , 2 , 2 ]
225
+ 'sample_size' : [2 , 2 , 2 ],
226
+ 'missing_val' : [0 , 0 , 0 ],
227
+ 'missing_se' : [0 , 0 , 0 ],
228
+ 'missing_sample_size' : [0 , 0 , 0 ],
211
229
}),
212
230
'wip_completely_home_prop_7dav' : pd .DataFrame (data = {
213
231
'geo_id' : ['al' , 'ga' , 'pa' ],
214
232
'val' : [0.1 , 0.055 , 0.15 ],
215
233
'se' : [0.05 , 0.005 , 0.05 ],
216
- 'sample_size' : [2 , 2 , 2 ]
234
+ 'sample_size' : [2 , 2 , 2 ],
235
+ 'missing_val' : [0 , 0 , 0 ],
236
+ 'missing_se' : [0 , 0 , 0 ],
237
+ 'missing_sample_size' : [0 , 0 , 0 ],
217
238
}),
218
239
'part_time_work_prop_7dav' : pd .DataFrame (data = {
219
240
'geo_id' : ['al' , 'ga' , 'pa' ],
220
241
'val' : [0.25 , 0.055 , 0.25 ],
221
242
'se' : [0.1 , 0.005 , 0.05 ],
222
- 'sample_size' : [2 , 2 , 2 ]
243
+ 'sample_size' : [2 , 2 , 2 ],
244
+ 'missing_val' : [0 , 0 , 0 ],
245
+ 'missing_se' : [0 , 0 , 0 ],
246
+ 'missing_sample_size' : [0 , 0 , 0 ],
223
247
}),
224
248
'full_time_work_prop_7dav' : pd .DataFrame (data = {
225
249
'geo_id' : ['al' , 'ga' , 'pa' ],
226
250
'val' : [0.35 , 0.055 , 0.35 ],
227
251
'se' : [0.1 , 0.005 , 0.05 ],
228
- 'sample_size' : [2 , 2 , 2 ]
252
+ 'sample_size' : [2 , 2 , 2 ],
253
+ 'missing_val' : [0 , 0 , 0 ],
254
+ 'missing_se' : [0 , 0 , 0 ],
255
+ 'missing_sample_size' : [0 , 0 , 0 ],
229
256
})
230
257
}
231
258
actual = {signal : pd .read_csv (
0 commit comments