-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patharx_forecaster.R
387 lines (368 loc) · 14.3 KB
/
arx_forecaster.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#' Direct autoregressive forecaster with covariates
#'
#' This is an autoregressive forecasting model for
#' [epiprocess::epi_df][epiprocess::as_epi_df] data. It does "direct" forecasting, meaning
#' that it estimates a model for a particular target horizon.
#'
#'
#' @param epi_data An `epi_df` object
#' @param outcome A character (scalar) specifying the outcome (in the
#' `epi_df`).
#' @param predictors A character vector giving column(s) of predictor variables.
#' This defaults to the `outcome`. However, if manually specified, only those variables
#' specifically mentioned will be used. (The `outcome` will not be added.)
#' By default, equals the outcome. If manually specified, does not add the
#' outcome variable, so make sure to specify it.
#' @param trainer A `{parsnip}` model describing the type of estimation.
#' For now, we enforce `mode = "regression"`.
#' @param args_list A list of customization arguments to determine
#' the type of forecasting model. See [arx_args_list()].
#'
#' @return A list with (1) `predictions` an `epi_df` of predicted values
#' and (2) `epi_workflow`, a list that encapsulates the entire estimation
#' workflow
#' @export
#' @seealso [arx_fcast_epi_workflow()], [arx_args_list()]
#'
#' @examples
#' jhu <- covid_case_death_rates %>%
#' dplyr::filter(time_value >= as.Date("2021-12-01"))
#'
#' out <- arx_forecaster(
#' jhu, "death_rate",
#' c("case_rate", "death_rate")
#' )
#'
#' out <- arx_forecaster(jhu, "death_rate",
#' c("case_rate", "death_rate"),
#' trainer = quantile_reg(),
#' args_list = arx_args_list(quantile_levels = 1:9 / 10)
#' )
arx_forecaster <- function(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()) {
if (!is_regression(trainer)) {
cli_abort("`trainer` must be a {.pkg parsnip} model of mode 'regression'.")
}
wf <- arx_fcast_epi_workflow(epi_data, outcome, predictors, trainer, args_list)
wf <- fit(wf, epi_data)
# get the forecast date for the forecast function
if (args_list$adjust_latency == "none") {
forecast_date_default <- max(epi_data$time_value)
} else {
forecast_date_default <- attributes(epi_data)$metadata$as_of
}
forecast_date <- args_list$forecast_date %||% forecast_date_default
preds <- forecast(wf, forecast_date = forecast_date) %>%
as_tibble() %>%
select(-time_value)
structure(
list(
predictions = preds,
epi_workflow = wf,
metadata = list(
training = attr(epi_data, "metadata"),
forecast_created = Sys.time()
)
),
class = c("arx_fcast", "canned_epipred")
)
}
#' Create a template `arx_forecaster` workflow
#'
#' This function creates an unfit workflow for use with [arx_forecaster()].
#' It is useful if you want to make small modifications to that forecaster
#' before fitting and predicting. Supplying a trainer to the function
#' may alter the returned `epi_workflow` object (e.g., if you intend to
#' use [quantile_reg()]) but can be omitted.
#'
#' @inheritParams arx_forecaster
#' @param trainer A `{parsnip}` model describing the type of estimation. For
#' now, we enforce `mode = "regression"`. May be `NULL` if you'd like to
#' decide later.
#'
#' @return An unfitted `epi_workflow`.
#' @export
#' @seealso [arx_forecaster()]
#'
#' @examples
#' library(dplyr)
#' jhu <- covid_case_death_rates %>%
#' filter(time_value >= as.Date("2021-12-01"))
#'
#' arx_fcast_epi_workflow(
#' jhu, "death_rate",
#' c("case_rate", "death_rate")
#' )
#'
#' arx_fcast_epi_workflow(jhu, "death_rate",
#' c("case_rate", "death_rate"),
#' trainer = quantile_reg(),
#' args_list = arx_args_list(quantile_levels = 1:9 / 10)
#' )
arx_fcast_epi_workflow <- function(
epi_data,
outcome,
predictors = outcome,
trainer = linear_reg(),
args_list = arx_args_list()) {
# --- validation
validate_forecaster_inputs(epi_data, outcome, predictors)
if (!inherits(args_list, c("arx_fcast", "alist"))) {
cli_abort("`args_list` was not created using `arx_args_list()`.")
}
if (!(is.null(trainer) || is_regression(trainer))) {
cli_abort("`trainer` must be a {.pkg parsnip} model of mode 'regression'.")
}
# forecast_date is above all what they set;
# if they don't and they're not adjusting latency, it defaults to the max time_value
# if they're adjusting, it defaults to the as_of
if (args_list$adjust_latency == "none") {
forecast_date_default <- max(epi_data$time_value)
if (!is.null(args_list$forecast_date) && args_list$forecast_date != forecast_date_default) {
cli_warn(
"The specified forecast date {args_list$forecast_date} doesn't match the date from which the forecast is actually occurring {forecast_date_default}.",
class = "epipredict__arx_forecaster__forecast_date_defaulting"
)
}
} else {
forecast_date_default <- attributes(epi_data)$metadata$as_of
}
forecast_date <- args_list$forecast_date %||% forecast_date_default
target_date <- args_list$target_date %||% (forecast_date + args_list$ahead)
if (forecast_date + args_list$ahead != target_date) {
cli_abort("`forecast_date` {.val {forecast_date}} + `ahead` {.val {ahead}} must equal `target_date` {.val {target_date}}.",
class = "epipredict__arx_forecaster__inconsistent_target_ahead_forecaste_date"
)
}
lags <- arx_lags_validator(predictors, args_list$lags)
# --- preprocessor
r <- epi_recipe(epi_data)
# adjust latency if the user asks
method_adjust_latency <- args_list$adjust_latency
if (!is.null(method_adjust_latency)) {
if (method_adjust_latency == "extend_ahead") {
r <- r %>% step_adjust_latency(all_outcomes(),
fixed_forecast_date = forecast_date,
method = method_adjust_latency
)
} else if (method_adjust_latency == "extend_lags") {
r <- r %>% step_adjust_latency(all_predictors(),
fixed_forecast_date = forecast_date,
method = method_adjust_latency
)
}
}
for (l in seq_along(lags)) {
p <- predictors[l]
r <- step_epi_lag(r, !!p, lag = lags[[l]])
}
r <- r %>%
step_epi_ahead(!!outcome, ahead = args_list$ahead)
r <- r %>%
step_epi_naomit() %>%
step_training_window(n_recent = args_list$n_training)
if (!is.null(args_list$check_enough_data_n)) {
r <- r %>% check_enough_train_data(
all_predictors(),
!!outcome,
n = args_list$check_enough_data_n,
epi_keys = args_list$check_enough_data_epi_keys,
drop_na = FALSE
)
}
# --- postprocessor
f <- frosting() %>% layer_predict() # %>% layer_naomit()
is_quantile_reg <- inherits(trainer, "quantile_reg") |
(inherits(trainer, "rand_forest") & trainer$engine == "grf_quantiles")
if (is_quantile_reg) {
# add all quantile_level to the forecaster and update postprocessor
if (inherits(trainer, "quantile_reg")) {
quantile_levels <- sort(compare_quantile_args(
args_list$quantile_levels,
rlang::eval_tidy(trainer$args$quantile_levels),
"qr"
))
trainer$args$quantile_levels <- rlang::enquo(quantile_levels)
} else {
quantile_levels <- sort(compare_quantile_args(
args_list$quantile_levels,
rlang::eval_tidy(trainer$eng_args$quantiles) %||%
c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95),
"grf"
))
trainer$eng_args$quantiles <- rlang::enquo(quantile_levels)
}
args_list$quantile_levels <- quantile_levels
f <- f %>%
layer_quantile_distn(quantile_levels = quantile_levels) %>%
layer_point_from_distn()
} else {
f <- f %>% layer_residual_quantiles(
quantile_levels = args_list$quantile_levels,
symmetrize = args_list$symmetrize,
by_key = args_list$quantile_by_key
)
}
f <- layer_add_forecast_date(f, forecast_date = forecast_date) %>%
layer_add_target_date(target_date = target_date)
if (args_list$nonneg) f <- layer_threshold(f, dplyr::starts_with(".pred"))
epi_workflow(r, trainer, f)
}
#' ARX forecaster argument constructor
#'
#' Constructs a list of arguments for [arx_forecaster()].
#'
#' @param lags Vector or List. Positive integers enumerating lags to use
#' in autoregressive-type models (in days). By default, an unnamed list
#' of lags will be set to correspond to the order of the predictors.
#' @param ahead Integer. Number of time steps ahead (in days) of the forecast
#' date for which forecasts should be produced.
#' @param n_training Integer. An upper limit for the number of rows per
#' key that are used for training
#' (in the time unit of the `epi_df`).
#' @param forecast_date Date. The date from which the forecast is occurring.
#' The default `NULL` will determine this automatically from either
#' 1. the maximum time value for which there's data if there is no latency
#' adjustment (the default case), or
#' 2. the `as_of` date of `epi_data` if `adjust_latency` is
#' non-`NULL`.
#' @param target_date Date. The date that is being forecast. The default `NULL`
#' will determine this automatically as `forecast_date + ahead`.
#' @param adjust_latency Character. One of the `method`s of
#' [step_adjust_latency()], or `"none"` (in which case there is no adjustment).
#' If the `forecast_date` is after the last day of data, this determines how
#' to shift the model to account for this difference. The options are:
#' - `"none"` the default, assumes the `forecast_date` is the last day of data
#' - `"extend_ahead"`: increase the `ahead` by the latency so it's relative to
#' the last day of data. For example, if the last day of data was 3 days ago,
#' the ahead becomes `ahead+3`.
#' - `"extend_lags"`: increase the lags so they're relative to the actual
#' forecast date. For example, if the lags are `c(0, 7, 14)` and the last day of
#' data was 3 days ago, the lags become `c(3, 10, 17)`.
#' @param warn_latency by default, `step_adjust_latency` warns the user if the
#' latency is large. If this is `FALSE`, that warning is turned off.
#' @param quantile_levels Vector or `NULL`. A vector of probabilities to produce
#' prediction intervals. These are created by computing the quantiles of
#' training residuals. A `NULL` value will result in point forecasts only.
#' @param symmetrize Logical. The default `TRUE` calculates
#' symmetric prediction intervals. This argument only applies when
#' residual quantiles are used. It is not applicable with
#' `trainer = quantile_reg()`, for example.
#' @param nonneg Logical. The default `TRUE` enforces nonnegative predictions
#' by hard-thresholding at 0.
#' @param quantile_by_key Character vector. Groups residuals by listed keys
#' before calculating residual quantiles. See the `by_key` argument to
#' [layer_residual_quantiles()] for more information. The default,
#' `character(0)` performs no grouping. This argument only applies when
#' residual quantiles are used. It is not applicable with
#' `trainer = quantile_reg()`, for example.
#' @param check_enough_data_n Integer. A lower limit for the number of rows per
#' epi_key that are required for training. If `NULL`, this check is ignored.
#' @param check_enough_data_epi_keys Character vector. A character vector of
#' column names on which to group the data and check threshold within each
#' group. Useful if training per group (for example, per geo_value).
#' @param ... Space to handle future expansions (unused).
#'
#'
#' @return A list containing updated parameter choices with class `arx_flist`.
#' @export
#'
#' @examples
#' arx_args_list()
#' arx_args_list(symmetrize = FALSE)
#' arx_args_list(quantile_levels = c(.1, .3, .7, .9), n_training = 120)
arx_args_list <- function(
lags = c(0L, 7L, 14L),
ahead = 7L,
n_training = Inf,
forecast_date = NULL,
target_date = NULL,
adjust_latency = c("none", "extend_ahead", "extend_lags", "locf"),
warn_latency = TRUE,
quantile_levels = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95),
symmetrize = TRUE,
nonneg = TRUE,
quantile_by_key = character(0L),
check_enough_data_n = NULL,
check_enough_data_epi_keys = NULL,
...) {
# error checking if lags is a list
rlang::check_dots_empty()
.lags <- lags
if (is.list(lags)) lags <- unlist(lags)
adjust_latency <- rlang::arg_match(adjust_latency)
arg_is_scalar(ahead, n_training, symmetrize, nonneg, adjust_latency, warn_latency)
arg_is_chr(quantile_by_key, allow_empty = TRUE)
arg_is_scalar(forecast_date, target_date, allow_null = TRUE)
arg_is_date(forecast_date, target_date, allow_null = TRUE)
arg_is_nonneg_int(ahead, lags)
arg_is_lgl(symmetrize, nonneg)
arg_is_probabilities(quantile_levels, allow_null = TRUE)
arg_is_pos(n_training)
if (is.finite(n_training)) arg_is_pos_int(n_training)
arg_is_pos(check_enough_data_n, allow_null = TRUE)
arg_is_chr(check_enough_data_epi_keys, allow_null = TRUE)
if (!is.null(forecast_date) && !is.null(target_date)) {
if (forecast_date + ahead != target_date) {
cli_abort("`forecast_date` {.val {forecast_date}} + `ahead` {.val {ahead}} must equal `target_date` {.val {target_date}}.",
class = "epipredict__arx_args__inconsistent_target_ahead_forecaste_date"
)
}
}
max_lags <- max(lags)
structure(
enlist(
lags = .lags,
ahead,
n_training,
quantile_levels,
forecast_date,
target_date,
adjust_latency,
warn_latency,
symmetrize,
nonneg,
max_lags,
quantile_by_key,
check_enough_data_n,
check_enough_data_epi_keys
),
class = c("arx_fcast", "alist")
)
}
#' @export
print.arx_fcast <- function(x, ...) {
name <- "ARX Forecaster"
NextMethod(name = name, ...)
}
compare_quantile_args <- function(alist, tlist, train_method = c("qr", "grf")) {
train_method <- rlang::arg_match(train_method)
default_alist <- eval(formals(arx_args_list)$quantile_levels)
default_tlist <- switch(train_method,
"qr" = eval(formals(quantile_reg)$quantile_levels),
"grf" = c(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95)
)
if (setequal(alist, default_alist)) {
if (setequal(tlist, default_tlist)) {
return(sort(unique(union(alist, tlist))))
} else {
return(sort(unique(tlist)))
}
} else {
if (setequal(tlist, default_tlist)) {
return(sort(unique(alist)))
} else {
if (setequal(alist, tlist)) {
return(sort(unique(alist)))
}
cli_abort(c(
"You have specified different, non-default, quantiles in the trainier and `arx_args` options.",
i = "Please only specify quantiles in one location."
))
}
}
}