@@ -86,7 +86,7 @@ edf %>%
86
86
```
87
87
88
88
We can compute the 7 day moving average of the confirmed daily cases for each
89
- geo_value by using the ` epi_slide_mean() ` function. For a more in-depth guide to
89
+ ` geo_value ` by using the ` epi_slide_mean() ` function. For a more in-depth guide to
90
90
sliding, see ` vignette("epi_df") ` .
91
91
92
92
``` {r}
@@ -96,15 +96,15 @@ edf %>%
96
96
```
97
97
98
98
We can compute the growth rate of the confirmed cumulative cases for each
99
- geo_value. For a more in-depth guide to growth rates, see ` vignette("growth_rate") ` .
99
+ ` geo_value ` . For a more in-depth guide to growth rates, see ` vignette("growth_rate") ` .
100
100
101
101
``` {r}
102
102
edf %>%
103
103
group_by(geo_value) %>%
104
104
mutate(cases_growth = growth_rate(x = time_value, y = cases_cumulative, method = "rel_change", h = 7))
105
105
```
106
106
107
- Detect outliers in daily reported cases for each geo_value. For a more in-depth
107
+ Detect outliers in daily reported cases for each ` geo_value ` . For a more in-depth
108
108
guide to outlier detection, see ` vignette("outliers") ` .
109
109
110
110
``` {r message=FALSE}
@@ -114,8 +114,8 @@ edf %>%
114
114
ungroup()
115
115
```
116
116
117
- Add a column to the epi_df object with the daily deaths for each geo_value and
118
- compute the correlations between cases and deaths for each geo_value. For a more
117
+ Add a column to the epi_df object with the daily deaths for each ` geo_value ` and
118
+ compute the correlations between cases and deaths for each ` geo_value ` . For a more
119
119
in-depth guide to correlations, see ` vignette("correlation") ` .
120
120
121
121
``` {r}
0 commit comments