114
114
# ' },
115
115
# ' .window_size = 7
116
116
# ' ) %>%
117
+ # ' ungroup() %>%
117
118
# ' dplyr::select(geo_value, time_value, cases, cases_7sd, cases_7dav)
118
119
# '
119
120
# ' # Use the geo_value or the ref_time_value in the slide computation
@@ -605,7 +606,8 @@ get_before_after_from_window <- function(window_size, align, time_type) {
605
606
# ' # Compute a 7-day trailing average on cases.
606
607
# ' cases_deaths_subset %>%
607
608
# ' group_by(geo_value) %>%
608
- # ' epi_slide_opt(cases, .f = data.table::frollmean, .window_size = 7)
609
+ # ' epi_slide_opt(cases, .f = data.table::frollmean, .window_size = 7) %>%
610
+ # ' ungroup()
609
611
# '
610
612
# ' # Same as above, but adjust `frollmean` settings for speed, accuracy, and
611
613
# ' # to allow partially-missing windows.
@@ -615,7 +617,8 @@ get_before_after_from_window <- function(window_size, align, time_type) {
615
617
# ' cases,
616
618
# ' .f = data.table::frollmean, .window_size = 7,
617
619
# ' algo = "exact", hasNA = TRUE, na.rm = TRUE
618
- # ' )
620
+ # ' ) %>%
621
+ # ' ungroup()
619
622
epi_slide_opt <- function (
620
623
.x , .col_names , .f , ... ,
621
624
.window_size = NULL , .align = c(" right" , " center" , " left" ),
@@ -919,20 +922,34 @@ epi_slide_opt <- function(
919
922
# '
920
923
# ' @export
921
924
# ' @examples
922
- # ' # Compute a 7-day trailing average on cases .
923
- # ' cases_deaths_subset %>%
925
+ # ' # Compute a 7-day trailing average of case rates .
926
+ # ' covid_case_death_rates_extended %>%
924
927
# ' group_by(geo_value) %>%
925
- # ' epi_slide_mean(cases, .window_size = 7)
928
+ # ' epi_slide_mean(case_rate, .window_size = 7) %>%
929
+ # ' ungroup()
926
930
# '
927
931
# ' # Same as above, but adjust `frollmean` settings for speed, accuracy, and
928
932
# ' # to allow partially-missing windows.
929
- # ' cases_deaths_subset %>%
933
+ # ' covid_case_death_rates_extended %>%
930
934
# ' group_by(geo_value) %>%
931
935
# ' epi_slide_mean(
932
- # ' cases ,
936
+ # ' case_rate ,
933
937
# ' .window_size = 7,
934
938
# ' na.rm = TRUE, algo = "exact", hasNA = TRUE
935
- # ' )
939
+ # ' ) %>%
940
+ # ' ungroup()
941
+ # '
942
+ # ' # Compute a 7-day trailing average of case rates and death rates, with custom
943
+ # ' # output column names:
944
+ # ' covid_case_death_rates_extended %>%
945
+ # ' group_by(geo_value) %>%
946
+ # ' epi_slide_mean(c(case_rate, death_rate), .window_size = 7,
947
+ # ' .new_col_names = c("smoothed_case_rate", "smoothed_death_rate")) %>%
948
+ # ' ungroup()
949
+ # ' covid_case_death_rates_extended %>%
950
+ # ' group_by(geo_value) %>%
951
+ # ' epi_slide_mean(c(case_rate, death_rate), .window_size = 7, .suffix = "_{.n}{.time_unit_abbr}_avg") %>%
952
+ # ' ungroup()
936
953
epi_slide_mean <- function (
937
954
.x , .col_names , ... ,
938
955
.window_size = NULL , .align = c(" right" , " center" , " left" ),
@@ -995,8 +1012,22 @@ epi_slide_mean <- function(
995
1012
# ' @examples
996
1013
# ' # Compute a 7-day trailing sum on cases.
997
1014
# ' cases_deaths_subset %>%
1015
+ # ' select(geo_value, time_value, cases) %>%
1016
+ # ' group_by(geo_value) %>%
1017
+ # ' epi_slide_sum(cases, .window_size = 7) %>%
1018
+ # ' ungroup()
1019
+ # '
1020
+ # ' # Specify output column names and/or naming scheme:
1021
+ # ' cases_deaths_subset %>%
1022
+ # ' select(geo_value, time_value, cases) %>%
1023
+ # ' group_by(geo_value) %>%
1024
+ # ' epi_slide_sum(cases, .window_size = 7, .new_col_names = "case_sum") %>%
1025
+ # ' ungroup()
1026
+ # ' cases_deaths_subset %>%
1027
+ # ' select(geo_value, time_value, cases) %>%
998
1028
# ' group_by(geo_value) %>%
999
- # ' epi_slide_sum(cases, .window_size = 7)
1029
+ # ' epi_slide_sum(cases, .window_size = 7, .prefix = "sum_") %>%
1030
+ # ' ungroup()
1000
1031
epi_slide_sum <- function (
1001
1032
.x , .col_names , ... ,
1002
1033
.window_size = NULL , .align = c(" right" , " center" , " left" ),
0 commit comments