@@ -159,7 +159,7 @@ def F_mat(self,state):
159159            dist  =  la .norm (curr_state [:2 ])
160160            k  =  self .prop_dt * self .GE / (dist ** 5 )
161161
162-             t_mat  =  np .array ([[- self .prop_dt * (y ** 2 - 2 * x ** 2 )/ 2 , 3 * x * y * self .prop_dt , 0 , 0 ],
162+             t_mat  =  np .array ([[- self .prop_dt * (y ** 2 - 2 * x ** 2 )/ 2 , 3 * x * y * self .prop_dt / 2.0 , 0 , 0 ],
163163                              [3 * x * y * self .prop_dt / 2.0 , - self .prop_dt * (x ** 2 - 2 * y ** 2 )/ 2 , 0 , 0 ],
164164                              [2 * x ** 2 - y ** 2 , 3 * x * y , 0 , 0 ],
165165                              [3 * x * y , 2 * y ** 2 - x ** 2 , 0 , 0 ]])
@@ -293,7 +293,7 @@ def opt(self):
293293            delta_x  =  spla .spsolve (M ,Lty )
294294            scale  =  1 
295295            # Damp the Gauss-Newton step if it doesn't do what the linearization predicts 
296-             scale_good  =  False 
296+             scale_good  =  la . norm ( delta_x )  <   10   # if the first step is too small, just do it and don't even check 
297297            while  not  scale_good :
298298                next_y  =  self .create_y (self .add_delta (delta_x * scale ))
299299                pred_y  =  y - L .dot (delta_x * scale )
@@ -350,26 +350,26 @@ def test_Jacobian(batch_uni, col, dx = .001):
350350    opt_class .opt ()
351351    plt .plot (opt_class .states [:,0 ],opt_class .states [:,1 ],'b' ,label = 'opt' )
352352    plt .legend ()
353-     plt .savefig (f'{ prefix } _res .png' )
353+     plt .savefig (f'{ prefix } _res_new .png' )
354354
355355    plt .figure ()
356356    plt .plot (opt_class .states [:,0 ],opt_class .states [:,1 ],c = 'b' , label = 'estimate' )
357357    plt .plot (truth [:,0 ],truth [:,1 ],'r--' ,label = 'truth' )
358358    plt .legend ()
359359    ax = plt .gca ()
360360    ax .set_aspect ('equal' )
361-     plt .savefig ('FG_' + prefix + '.png' )
361+     plt .savefig ('FG_' + prefix + '_new .png' )
362362    plt .show ()
363363
364364
365365    plt .figure ()
366366    plt .plot (opt_class .states - truth )
367367    plt .legend  (['x' ,'y' ,'vx' ,'vy' ])
368368    plt .title ('errors' )
369-     plt .savefig (f'{ prefix } _errors .png' )
369+     plt .savefig (f'{ prefix } _errors_new .png' )
370370    plt .show ()
371371
372-     np .savez ('fg_' + prefix + '_res ' ,fg_res = opt_class .states , truth = truth )
372+     np .savez ('fg_' + prefix + '_res_new ' ,fg_res = opt_class .states , truth = truth )
373373
374374
375375
0 commit comments