|
1 |
| ---- |
2 |
| -id: reverse-pairs |
3 |
| -title: Reverse Pairs |
4 |
| -sidebar_label: 0493 - Reverse Pairs |
5 |
| -tags: |
6 |
| - - Leetcode |
7 |
| - - Merge Sort |
8 |
| ---- |
9 |
| - |
10 |
| -## Problem Statement |
11 |
| - |
12 |
| -Given an integer array `nums`, return the number of reverse pairs in the array. |
13 |
| - |
14 |
| -A reverse pair is defined as a pair `(i, j)` where: |
15 |
| - |
16 |
| -- $0 <= i < j < nums.length and$ |
17 |
| -- $nums[i] > 2 * nums[j].$ |
18 |
| - |
19 |
| -## Examples |
20 |
| - |
21 |
| -### Example 1 |
22 |
| - |
23 |
| -- Input: `nums = [1,3,2,3,1]` |
24 |
| -- Output: `2` |
25 |
| -- Explanation: The reverse pairs are: |
26 |
| - - `(1, 4)` -> `nums[1] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
27 |
| - - `(3, 4)` -> `nums[3] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
28 |
| - |
29 |
| -### Example 2 |
30 |
| - |
31 |
| -- Input: `nums = [2,4,3,5,1]` |
32 |
| -- Output: `3` |
33 |
| -- Explanation: The reverse pairs are: |
34 |
| - - `(1, 4)` -> `nums[1] = 4`, `nums[4] = 1`, `4 > 2 * 1` |
35 |
| - - `(2, 4)` -> `nums[2] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
36 |
| - - `(3, 4)` -> `nums[3] = 5`, `nums[4] = 1`, `5 > 2 * 1` |
37 |
| - |
38 |
| -## Constraints |
39 |
| - |
40 |
| -- $1 <= nums.length <= 5 * 104$ |
41 |
| -- $-231 <= nums[i] <= 231 - 1$ |
42 |
| - |
43 |
| -## Algorithm |
44 |
| - |
45 |
| -To solve this problem efficiently, we can use a modified merge sort algorithm, which not only sorts the array but also counts the number of reverse pairs during the merging process. The idea is to leverage the divide-and-conquer approach to count pairs in `O(n log n)` time complexity. |
46 |
| - |
47 |
| -### Steps: |
48 |
| - |
49 |
| -1. **Divide**: Split the array into two halves. |
50 |
| -2. **Count**: Count the reverse pairs in each half recursively. |
51 |
| -3. **Merge and Count**: While merging the two halves, count the reverse pairs where one element is from the left half and the other is from the right half. |
52 |
| - |
53 |
| -## Code |
54 |
| - |
55 |
| -### Python |
56 |
| - |
57 |
| -```python |
58 |
| -class Solution: |
59 |
| - def reversePairs(self, nums: List[int]) -> int: |
60 |
| - def merge_sort(nums, l, r): |
61 |
| - if l >= r: |
62 |
| - return 0 |
63 |
| - |
64 |
| - mid = (l + r) // 2 |
65 |
| - count = merge_sort(nums, l, mid) + merge_sort(nums, mid + 1, r) |
66 |
| - |
67 |
| - j = mid + 1 |
68 |
| - for i in range(l, mid + 1): |
69 |
| - while j <= r and nums[i] > 2 * nums[j]: |
70 |
| - j += 1 |
71 |
| - count += j - (mid + 1) |
72 |
| - |
73 |
| - nums[l:r + 1] = sorted(nums[l:r + 1]) |
74 |
| - return count |
75 |
| - |
76 |
| - return merge_sort(nums, 0, len(nums) - 1) |
77 |
| -``` |
78 |
| - |
79 |
| -### C++ |
80 |
| - |
81 |
| -```cpp |
82 |
| -#include <vector> |
83 |
| -using namespace std; |
84 |
| - |
85 |
| -class Solution { |
86 |
| -public: |
87 |
| - int reversePairs(vector<int>& nums) { |
88 |
| - return reversePairsSub(nums, 0, nums.size() - 1); |
89 |
| - } |
90 |
| - |
91 |
| -private: |
92 |
| - int reversePairsSub(vector<int>& nums, int l, int r) { |
93 |
| - if (l >= r) return 0; |
94 |
| - |
95 |
| - int m = l + ((r - l) >> 1); |
96 |
| - int res = reversePairsSub(nums, l, m) + reversePairsSub(nums, m + 1, r); |
97 |
| - |
98 |
| - int i = l, j = m + 1, k = 0, p = m + 1; |
99 |
| - vector<int> merge(r - l + 1); |
100 |
| - |
101 |
| - while (i <= m) { |
102 |
| - while (p <= r && nums[i] > 2L * nums[p]) p++; |
103 |
| - res += p - (m + 1); |
104 |
| - |
105 |
| - while (j <= r && nums[i] >= nums[j]) merge[k++] = nums[j++]; |
106 |
| - merge[k++] = nums[i++]; |
107 |
| - } |
108 |
| - |
109 |
| - while (j <= r) merge[k++] = nums[j++]; |
110 |
| - |
111 |
| - copy(merge.begin(), merge.end(), nums.begin() + l); |
112 |
| - |
113 |
| - return res; |
114 |
| - } |
115 |
| -}; |
116 |
| -``` |
117 |
| -
|
118 |
| -### Java |
119 |
| -
|
120 |
| -```java |
121 |
| -import java.util.Arrays; |
122 |
| -
|
123 |
| -class Solution { |
124 |
| - public int reversePairs(int[] nums) { |
125 |
| - return mergeSort(nums, 0, nums.length - 1); |
126 |
| - } |
127 |
| -
|
128 |
| - private int mergeSort(int[] nums, int left, int right) { |
129 |
| - if (left >= right) return 0; |
130 |
| -
|
131 |
| - int mid = left + (right - left) / 2; |
132 |
| - int count = mergeSort(nums, left, mid) + mergeSort(nums, mid + 1, right); |
133 |
| -
|
134 |
| - int j = mid + 1; |
135 |
| - for (int i = left; i <= mid; i++) { |
136 |
| - while (j <= right && nums[i] > 2L * nums[j]) j++; |
137 |
| - count += j - (mid + 1); |
138 |
| - } |
139 |
| -
|
140 |
| - Arrays.sort(nums, left, right + 1); |
141 |
| - return count; |
142 |
| - } |
143 |
| -} |
144 |
| -``` |
145 |
| - |
146 |
| -### JavaScript |
147 |
| - |
148 |
| -```javascript |
149 |
| -var reversePairs = function (nums) { |
150 |
| - function mergeSort(nums, left, right) { |
151 |
| - if (left >= right) return 0; |
152 |
| - |
153 |
| - let mid = left + Math.floor((right - left) / 2); |
154 |
| - let count = mergeSort(nums, left, mid) + mergeSort(nums, mid + 1, right); |
155 |
| - |
156 |
| - let j = mid + 1; |
157 |
| - for (let i = left; i <= mid; i++) { |
158 |
| - while (j <= right && nums[i] > 2 * nums[j]) j++; |
159 |
| - count += j - (mid + 1); |
160 |
| - } |
161 |
| - |
162 |
| - nums.splice( |
163 |
| - left, |
164 |
| - right - left + 1, |
165 |
| - ...nums.slice(left, right + 1).sort((a, b) => a - b) |
166 |
| - ); |
167 |
| - return count; |
168 |
| - } |
169 |
| - |
170 |
| - return mergeSort(nums, 0, nums.length - 1); |
171 |
| -}; |
172 |
| -``` |
| 1 | +--- |
| 2 | +id: reverse-pairs |
| 3 | +title: Reverse Pairs |
| 4 | +sidebar_label: 0493 - Reverse Pairs |
| 5 | +tags: |
| 6 | + - Leetcode |
| 7 | + - Merge Sort |
| 8 | +--- |
| 9 | + |
| 10 | +## Problem Statement |
| 11 | + |
| 12 | +Given an integer array `nums`, return the number of reverse pairs in the array. |
| 13 | + |
| 14 | +A reverse pair is defined as a pair `(i, j)` where: |
| 15 | + |
| 16 | +- $0 <= i < j < nums.length and$ |
| 17 | +- $nums[i] > 2 * nums[j].$ |
| 18 | + |
| 19 | +## Examples |
| 20 | + |
| 21 | +### Example 1 |
| 22 | + |
| 23 | +- Input: `nums = [1,3,2,3,1]` |
| 24 | +- Output: `2` |
| 25 | +- Explanation: The reverse pairs are: |
| 26 | + - `(1, 4)` -> `nums[1] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
| 27 | + - `(3, 4)` -> `nums[3] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
| 28 | + |
| 29 | +### Example 2 |
| 30 | + |
| 31 | +- Input: `nums = [2,4,3,5,1]` |
| 32 | +- Output: `3` |
| 33 | +- Explanation: The reverse pairs are: |
| 34 | + - `(1, 4)` -> `nums[1] = 4`, `nums[4] = 1`, `4 > 2 * 1` |
| 35 | + - `(2, 4)` -> `nums[2] = 3`, `nums[4] = 1`, `3 > 2 * 1` |
| 36 | + - `(3, 4)` -> `nums[3] = 5`, `nums[4] = 1`, `5 > 2 * 1` |
| 37 | + |
| 38 | +## Constraints |
| 39 | + |
| 40 | +- $1 <= nums.length <= 5 * 104$ |
| 41 | +- $-231 <= nums[i] <= 231 - 1$ |
| 42 | + |
| 43 | +## Algorithm |
| 44 | + |
| 45 | +To solve this problem efficiently, we can use a modified merge sort algorithm, which not only sorts the array but also counts the number of reverse pairs during the merging process. The idea is to leverage the divide-and-conquer approach to count pairs in `O(n log n)` time complexity. |
| 46 | + |
| 47 | +### Steps: |
| 48 | + |
| 49 | +1. **Divide**: Split the array into two halves. |
| 50 | +2. **Count**: Count the reverse pairs in each half recursively. |
| 51 | +3. **Merge and Count**: While merging the two halves, count the reverse pairs where one element is from the left half and the other is from the right half. |
| 52 | + |
| 53 | +## Code |
| 54 | + |
| 55 | +### Python |
| 56 | + |
| 57 | +```python |
| 58 | +class Solution: |
| 59 | + def reversePairs(self, nums: List[int]) -> int: |
| 60 | + def merge_sort(nums, l, r): |
| 61 | + if l >= r: |
| 62 | + return 0 |
| 63 | + |
| 64 | + mid = (l + r) // 2 |
| 65 | + count = merge_sort(nums, l, mid) + merge_sort(nums, mid + 1, r) |
| 66 | + |
| 67 | + j = mid + 1 |
| 68 | + for i in range(l, mid + 1): |
| 69 | + while j <= r and nums[i] > 2 * nums[j]: |
| 70 | + j += 1 |
| 71 | + count += j - (mid + 1) |
| 72 | + |
| 73 | + nums[l:r + 1] = sorted(nums[l:r + 1]) |
| 74 | + return count |
| 75 | + |
| 76 | + return merge_sort(nums, 0, len(nums) - 1) |
| 77 | +``` |
| 78 | + |
| 79 | +### C++ |
| 80 | + |
| 81 | +```cpp |
| 82 | +#include <vector> |
| 83 | +using namespace std; |
| 84 | + |
| 85 | +class Solution { |
| 86 | +public: |
| 87 | + int reversePairs(vector<int>& nums) { |
| 88 | + return reversePairsSub(nums, 0, nums.size() - 1); |
| 89 | + } |
| 90 | + |
| 91 | +private: |
| 92 | + int reversePairsSub(vector<int>& nums, int l, int r) { |
| 93 | + if (l >= r) return 0; |
| 94 | + |
| 95 | + int m = l + ((r - l) >> 1); |
| 96 | + int res = reversePairsSub(nums, l, m) + reversePairsSub(nums, m + 1, r); |
| 97 | + |
| 98 | + int i = l, j = m + 1, k = 0, p = m + 1; |
| 99 | + vector<int> merge(r - l + 1); |
| 100 | + |
| 101 | + while (i <= m) { |
| 102 | + while (p <= r && nums[i] > 2L * nums[p]) p++; |
| 103 | + res += p - (m + 1); |
| 104 | + |
| 105 | + while (j <= r && nums[i] >= nums[j]) merge[k++] = nums[j++]; |
| 106 | + merge[k++] = nums[i++]; |
| 107 | + } |
| 108 | + |
| 109 | + while (j <= r) merge[k++] = nums[j++]; |
| 110 | + |
| 111 | + copy(merge.begin(), merge.end(), nums.begin() + l); |
| 112 | + |
| 113 | + return res; |
| 114 | + } |
| 115 | +}; |
| 116 | +``` |
| 117 | +
|
| 118 | +### Java |
| 119 | +
|
| 120 | +```java |
| 121 | +import java.util.Arrays; |
| 122 | +
|
| 123 | +class Solution { |
| 124 | + public int reversePairs(int[] nums) { |
| 125 | + return mergeSort(nums, 0, nums.length - 1); |
| 126 | + } |
| 127 | +
|
| 128 | + private int mergeSort(int[] nums, int left, int right) { |
| 129 | + if (left >= right) return 0; |
| 130 | +
|
| 131 | + int mid = left + (right - left) / 2; |
| 132 | + int count = mergeSort(nums, left, mid) + mergeSort(nums, mid + 1, right); |
| 133 | +
|
| 134 | + int j = mid + 1; |
| 135 | + for (int i = left; i <= mid; i++) { |
| 136 | + while (j <= right && nums[i] > 2L * nums[j]) j++; |
| 137 | + count += j - (mid + 1); |
| 138 | + } |
| 139 | +
|
| 140 | + Arrays.sort(nums, left, right + 1); |
| 141 | + return count; |
| 142 | + } |
| 143 | +} |
| 144 | +``` |
| 145 | + |
| 146 | +### JavaScript |
| 147 | + |
| 148 | +```javascript |
| 149 | +var reversePairs = function (nums) { |
| 150 | + function mergeSort(nums, left, right) { |
| 151 | + if (left >= right) return 0; |
| 152 | + |
| 153 | + let mid = left + Math.floor((right - left) / 2); |
| 154 | + let count = mergeSort(nums, left, mid) + mergeSort(nums, mid + 1, right); |
| 155 | + |
| 156 | + let j = mid + 1; |
| 157 | + for (let i = left; i <= mid; i++) { |
| 158 | + while (j <= right && nums[i] > 2 * nums[j]) j++; |
| 159 | + count += j - (mid + 1); |
| 160 | + } |
| 161 | + |
| 162 | + nums.splice( |
| 163 | + left, |
| 164 | + right - left + 1, |
| 165 | + ...nums.slice(left, right + 1).sort((a, b) => a - b) |
| 166 | + ); |
| 167 | + return count; |
| 168 | + } |
| 169 | + |
| 170 | + return mergeSort(nums, 0, nums.length - 1); |
| 171 | +}; |
| 172 | +``` |
0 commit comments