|
| 1 | +--- |
| 2 | +id: powx-n |
| 3 | +title: Pow(x,n) |
| 4 | +difficulty: Medium |
| 5 | +sidebar_label: 0050-powxn |
| 6 | +tags: |
| 7 | + - Math |
| 8 | + - Recursion |
| 9 | +--- |
| 10 | + |
| 11 | +## Problem Description |
| 12 | + |
| 13 | +| Problem Statement | Solution Link | LeetCode Profile | |
| 14 | +| :---------------- | :------------ | :--------------- | |
| 15 | +| [Pow(x,n)](https://leetcode.com/problems/powx-n/description/) | [Pow(x,n) Solution on LeetCode](https://leetcode.com/problems/powx-n/solutions/) | [Leetcode Profile](https://leetcode.com/u/debangi_29/) | |
| 16 | + |
| 17 | +## Problem Description |
| 18 | + |
| 19 | +Implement pow(x, n), which calculates x raised to the power n (i.e., $x^n$). |
| 20 | + |
| 21 | + |
| 22 | + |
| 23 | +### Examples |
| 24 | + |
| 25 | +### Example 1: |
| 26 | + |
| 27 | +**Input**: x = 2.00000, n = 10 |
| 28 | + |
| 29 | +**Output**: 1024.00000 |
| 30 | + |
| 31 | + |
| 32 | +### Example 2: |
| 33 | + |
| 34 | +**Input**: x = 2.10000, n = 3 |
| 35 | + |
| 36 | +**Output**: 9.26100 |
| 37 | + |
| 38 | +### Example 3: |
| 39 | + |
| 40 | +**Input**: x = 2.00000, n = -2 |
| 41 | + |
| 42 | +**Output**: 0.25000 |
| 43 | + |
| 44 | +**Explanation**: 2-2 = 1/22 = 1/4 = 0.25 |
| 45 | + |
| 46 | + |
| 47 | +### Constraints |
| 48 | + |
| 49 | +- $-100.0 < x < 100.0$ |
| 50 | +- $-2^{31} \leq n \leq 2^{31} - 1$ |
| 51 | +- $n$ is an integer. |
| 52 | +- Either $x$ is not zero or $n > 0$. |
| 53 | +- $-10^{4} \leq x^{n} \leq 10^{4}$ |
| 54 | + |
| 55 | +### Approach |
| 56 | +Initialize ans as 1.0 and store a duplicate copy of n i.e nn using to avoid overflow |
| 57 | + |
| 58 | +Check if nn is a negative number, in that case, make it a positive number. |
| 59 | + |
| 60 | +Keep on iterating until nn is greater than zero, now if nn is an odd power then multiply x with ans ans reduce nn by 1. Else multiply x with itself and divide nn by two. |
| 61 | + |
| 62 | +Now after the entire binary exponentiation is complete and nn becomes zero, check if n is a negative value we know the answer will be 1 by and. |
| 63 | + |
| 64 | +### Solution Code |
| 65 | + |
| 66 | +#### Python |
| 67 | + |
| 68 | +``` |
| 69 | +class Solution: |
| 70 | + def myPow(x: float, n: int) -> float: |
| 71 | + ans = 1.0 |
| 72 | + nn = n |
| 73 | + if nn < 0: |
| 74 | + nn = -1 * nn |
| 75 | + while nn: |
| 76 | + if nn % 2: |
| 77 | + ans = ans * x |
| 78 | + nn = nn - 1 |
| 79 | + else: |
| 80 | + x = x * x |
| 81 | + nn = nn // 2 |
| 82 | + if n < 0: |
| 83 | + ans = 1.0 / ans |
| 84 | + return ans |
| 85 | +``` |
| 86 | + |
| 87 | +#### Java |
| 88 | + |
| 89 | +``` |
| 90 | +class Solution { |
| 91 | + public static double myPow(double x, int n) { |
| 92 | + double ans = 1.0; |
| 93 | + long nn = n; |
| 94 | + if (nn < 0) nn = -1 * nn; |
| 95 | + while (nn > 0) { |
| 96 | + if (nn % 2 == 1) { |
| 97 | + ans = ans * x; |
| 98 | + nn = nn - 1; |
| 99 | + } else { |
| 100 | + x = x * x; |
| 101 | + nn = nn / 2; |
| 102 | + } |
| 103 | + } |
| 104 | + if (n < 0) ans = (double)(1.0) / (double)(ans); |
| 105 | + return ans; |
| 106 | + } |
| 107 | +} |
| 108 | +``` |
| 109 | + |
| 110 | +#### C++ |
| 111 | + |
| 112 | +``` |
| 113 | +class Solution { |
| 114 | + public: |
| 115 | + double myPow(double x, int n) { |
| 116 | + double ans = 1.0; |
| 117 | + long long nn = n; |
| 118 | + if (nn < 0) nn = -1 * nn; |
| 119 | + while (nn) { |
| 120 | + if (nn % 2) { |
| 121 | + ans = ans * x; |
| 122 | + nn = nn - 1; |
| 123 | + } else { |
| 124 | + x = x * x; |
| 125 | + nn = nn / 2; |
| 126 | + } |
| 127 | + } |
| 128 | + if (n < 0) ans = (double)(1.0) / (double)(ans); |
| 129 | + return ans; |
| 130 | +} |
| 131 | +}; |
| 132 | +
|
| 133 | +``` |
| 134 | + |
| 135 | +### Conclusion |
| 136 | + |
| 137 | +- Time Complexity: $O(log n)$ , where n is the exponent; Using Binary exponentiation. |
| 138 | + |
| 139 | +- Space Complexity: $O(1)$ as we are not using any extra space. |
0 commit comments