|
| 1 | +--- |
| 2 | +id: nth-fibonacci-number |
| 3 | +title: Nth Fibonacci Number |
| 4 | +sidebar_label: Nth Fibonacci Number |
| 5 | +tags: |
| 6 | + - Easy |
| 7 | + - Dynamic Programming |
| 8 | + - Math |
| 9 | +description: "This tutorial covers the solution to the Nth Fibonacci Number problem from the GeeksforGeeks." |
| 10 | +--- |
| 11 | +## Problem Description |
| 12 | + |
| 13 | +Lucky numbers are subset of integers. Rather than going into much theory, let us see the process of arriving at lucky numbers, |
| 14 | +Take the set of integers |
| 15 | +`1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, `10`, `11`, `12`, `13`, `14`, `15`, `16`, `17`, `18`, `19`,…… |
| 16 | +First, delete every second number, we get following reduced set. |
| 17 | +`1`, `3`, `5`, `7`, `9`, `11`, `13`, `15`, `17`, `19`,………… |
| 18 | +Now, delete every third number, we get |
| 19 | +`1`, `3`, `7`, `9`, `13`, `15`, `19`,….…. |
| 20 | +Continue this process indefinitely…… |
| 21 | +Any number that does NOT get deleted due to above process is called “lucky”. |
| 22 | + |
| 23 | +You are given a number N, you need to tell whether the number is lucky or not. If the number is lucky return 1 otherwise 0. |
| 24 | + |
| 25 | +## Examples |
| 26 | + |
| 27 | +**Example 1:** |
| 28 | + |
| 29 | +``` |
| 30 | +Input: |
| 31 | +N = 5 |
| 32 | +Output: 0 |
| 33 | +Explanation: 5 is not a lucky number |
| 34 | +as it gets deleted in the second |
| 35 | +iteration. |
| 36 | +``` |
| 37 | + |
| 38 | +**Example 2:** |
| 39 | + |
| 40 | +``` |
| 41 | +Input: |
| 42 | +N = 19 |
| 43 | +Output: 1 |
| 44 | +Explanation: 19 is a lucky number because |
| 45 | +it does not get deleted throughout the process. |
| 46 | +``` |
| 47 | + |
| 48 | +## Your Task |
| 49 | + |
| 50 | +You don't need to read input or print anything. You only need to complete the function isLucky() that takes N as parameter and returns either False if the N is not lucky else True. |
| 51 | + |
| 52 | +Expected Time Complexity: $O(sqrt(n))$ |
| 53 | + |
| 54 | +Expected Auxiliary Space: $O(1)$ for iterative approach. |
| 55 | + |
| 56 | +## Constraints |
| 57 | + |
| 58 | +* `1 ≤ n ≤ 10^5` |
| 59 | + |
| 60 | +## Problem Explanation |
| 61 | + |
| 62 | +Lucky numbers are subset of integers. Rather than going into much theory, let us see the process of arriving at lucky numbers, |
| 63 | +Take the set of integers |
| 64 | +`1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, `10`, `11`, `12`, `13`, `14`, `15`, `16`, `17`, `18`, `19`,…… |
| 65 | +First, delete every second number, we get following reduced set. |
| 66 | +`1`, `3`, `5`, `7`, `9`, `11`, `13`, `15`, `17`, `19`,………… |
| 67 | +Now, delete every third number, we get |
| 68 | +`1`, `3`, `7`, `9`, `13`, `15`, `19`,….…. |
| 69 | +Continue this process indefinitely…… |
| 70 | +Any number that does NOT get deleted due to above process is called “lucky”. |
| 71 | + |
| 72 | +You are given a number N, you need to tell whether the number is lucky or not. If the number is lucky return 1 otherwise 0. |
| 73 | + |
| 74 | +## Code Implementation |
| 75 | + |
| 76 | +<Tabs> |
| 77 | + <TabItem value="Python" label="Python" default> |
| 78 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 79 | + |
| 80 | + ```py |
| 81 | + def is_lucky(N): |
| 82 | + lucky_numbers = list(range(1, N + 1)) |
| 83 | + delete_step = 2 |
| 84 | + while delete_step <= len(lucky_numbers): |
| 85 | + lucky_numbers = [num for i, num in enumerate(lucky_numbers) if (i + 1) % delete_step != 0] |
| 86 | + delete_step += 1 |
| 87 | + return 1 if N in lucky_numbers else 0 |
| 88 | + |
| 89 | + ``` |
| 90 | + |
| 91 | + </TabItem> |
| 92 | + <TabItem value="C++" label="C++"> |
| 93 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 94 | + |
| 95 | + ```cpp |
| 96 | + int isLucky(int N) { |
| 97 | + vector<int> luckyNumbers; |
| 98 | + for (int i = 1; i <= N; i++) { |
| 99 | + luckyNumbers.push_back(i); |
| 100 | + } |
| 101 | + int deleteStep = 2; |
| 102 | + while (deleteStep <= luckyNumbers.size()) { |
| 103 | + for (int i = deleteStep - 1; i < luckyNumbers.size(); i += deleteStep) { |
| 104 | + luckyNumbers.erase(luckyNumbers.begin() + i); |
| 105 | + } |
| 106 | + deleteStep++; |
| 107 | + } |
| 108 | + for (int num : luckyNumbers) { |
| 109 | + if (num == N) { |
| 110 | + return 1; |
| 111 | + } |
| 112 | + } |
| 113 | + return 0; |
| 114 | +} |
| 115 | + |
| 116 | + ``` |
| 117 | +
|
| 118 | + </TabItem> |
| 119 | +
|
| 120 | + <TabItem value="Javascript" label="Javascript" default> |
| 121 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 122 | +
|
| 123 | + ```javascript |
| 124 | +function isLucky(N) { |
| 125 | + let luckyNumbers = Array.from({ length: N }, (_, i) => i + 1); |
| 126 | + let deleteStep = 2; |
| 127 | + while (deleteStep <= luckyNumbers.length) { |
| 128 | + luckyNumbers = luckyNumbers.filter((_, i) => (i + 1) % deleteStep !== 0); |
| 129 | + deleteStep++; |
| 130 | + } |
| 131 | + return luckyNumbers.includes(N) ? 1 : 0; |
| 132 | +} |
| 133 | +
|
| 134 | +
|
| 135 | + ``` |
| 136 | + |
| 137 | + </TabItem> |
| 138 | + |
| 139 | + <TabItem value="Typescript" label="Typescript" default> |
| 140 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 141 | + |
| 142 | + ```typescript |
| 143 | +function isLucky(N) { |
| 144 | + let luckyNumbers = Array.from({ length: N }, (_, i) => i + 1); |
| 145 | + let deleteStep = 2; |
| 146 | + while (deleteStep <= luckyNumbers.length) { |
| 147 | + luckyNumbers = luckyNumbers.filter((_, i) => (i + 1) % deleteStep !== 0); |
| 148 | + deleteStep++; |
| 149 | + } |
| 150 | + return luckyNumbers.includes(N) ? 1 : 0; |
| 151 | +} |
| 152 | + |
| 153 | + |
| 154 | + ``` |
| 155 | + |
| 156 | + </TabItem> |
| 157 | + |
| 158 | + <TabItem value="Java" label="Java" default> |
| 159 | + <SolutionAuthor name="@Ishitamukherjee2004"/> |
| 160 | + |
| 161 | + ```java |
| 162 | +public int isLucky(int N) { |
| 163 | + List<Integer> luckyNumbers = new ArrayList<>(); |
| 164 | + for (int i = 1; i <= N; i++) { |
| 165 | + luckyNumbers.add(i); |
| 166 | + } |
| 167 | + int deleteStep = 2; |
| 168 | + while (deleteStep <= luckyNumbers.size()) { |
| 169 | + for (int i = deleteStep - 1; i < luckyNumbers.size(); i += deleteStep) { |
| 170 | + luckyNumbers.remove(i); |
| 171 | + } |
| 172 | + deleteStep++; |
| 173 | + } |
| 174 | + for (int num : luckyNumbers) { |
| 175 | + if (num == N) { |
| 176 | + return 1; |
| 177 | + } |
| 178 | + } |
| 179 | + return 0; |
| 180 | +} |
| 181 | + |
| 182 | + |
| 183 | + ``` |
| 184 | + |
| 185 | + </TabItem> |
| 186 | +</Tabs> |
| 187 | + |
| 188 | + |
| 189 | +## Time Complexity |
| 190 | + |
| 191 | +* The iterative approach has a time complexity of $O(n^2)$. |
| 192 | + |
| 193 | +## Space Complexity |
| 194 | + |
| 195 | +* The space complexity is $O(n)$ since we are using only a fixed amount of extra space. |
0 commit comments