|
| 1 | +--- |
| 2 | +id: path-sum-iii |
| 3 | +title: Path Sum III |
| 4 | +sidebar_label: 0437 - Path Sum III |
| 5 | +tags: |
| 6 | +- Tree |
| 7 | +- Depth-First Search |
| 8 | +- Binary Tree |
| 9 | +description: "This is a solution to the Path Sum III problem on LeetCode." |
| 10 | +--- |
| 11 | + |
| 12 | +## Problem Description |
| 13 | +Given the root of a binary tree and an integer targetSum, return the number of paths where the sum of the values along the path equals targetSum. |
| 14 | +The path does not need to start or end at the root or a leaf, but it must go downwards (i.e., traveling only from parent nodes to child nodes). |
| 15 | +### Examples |
| 16 | + |
| 17 | +**Example 1:** |
| 18 | + |
| 19 | +``` |
| 20 | +Input: root = [10,5,-3,3,2,null,11,3,-2,null,1], targetSum = 8 |
| 21 | +Output: 3 |
| 22 | +Explanation: The paths that sum to 8 are shown. |
| 23 | +``` |
| 24 | + |
| 25 | +**Example 2:** |
| 26 | +``` |
| 27 | +Input: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 |
| 28 | +Output: 3 |
| 29 | +``` |
| 30 | + |
| 31 | +### Constraints |
| 32 | +- The number of nodes in the tree is in the range [0, 1000]. |
| 33 | +- `-10^9 <= Node.val <= 10^9` |
| 34 | +- `-1000 <= targetSum <= 1000` |
| 35 | + |
| 36 | +## Solution for Path Sum III |
| 37 | + |
| 38 | +### Approach |
| 39 | +#### Tree Traversal: |
| 40 | + |
| 41 | +- The main idea is to traverse the binary tree. This is achieved using a recursive function solve that explores all nodes starting from the root. |
| 42 | +- The traversal is done using Depth First Search (DFS), ensuring all possible paths from the root to the leaves are explored. |
| 43 | +#### Path Tracking: |
| 44 | +- During traversal, we maintain a path vector that keeps track of the nodes' values along the current path from the root to the current node. |
| 45 | +- As we visit each node, its value is added to the path. |
| 46 | +#### Path Sum Calculation: |
| 47 | +- After adding a node’s value to the path, we check all sub-paths ending at the current node to see if any of them sum to the targetSum. |
| 48 | +- We iterate backwards through the path vector, accumulating the sum and checking if it matches the targetSum. |
| 49 | +- If a sub-path's sum matches targetSum, we increment the count. |
| 50 | +#### Backtracking: |
| 51 | +- After checking the sub-paths for the current node, we backtrack by removing the current node's value from the path. |
| 52 | +- This ensures that the path vector only contains nodes along the current path in the DFS traversal. |
| 53 | + |
| 54 | +<Tabs> |
| 55 | + <TabItem value="Solution" label="Solution"> |
| 56 | + |
| 57 | +#### Implementation |
| 58 | + |
| 59 | +```jsx live |
| 60 | +function pathSum3() { |
| 61 | + function TreeNode(val = 0, left = null, right = null) { |
| 62 | + this.val = val; |
| 63 | + this.left = left; |
| 64 | + this.right = right; |
| 65 | +} |
| 66 | + |
| 67 | +function constructTreeFromArray(array) { |
| 68 | + if (!array.length) return null; |
| 69 | + |
| 70 | + let root = new TreeNode(array[0]); |
| 71 | + let queue = [root]; |
| 72 | + let i = 1; |
| 73 | + |
| 74 | + while (i < array.length) { |
| 75 | + let currentNode = queue.shift(); |
| 76 | + |
| 77 | + if (array[i] !== null) { |
| 78 | + currentNode.left = new TreeNode(array[i]); |
| 79 | + queue.push(currentNode.left); |
| 80 | + } |
| 81 | + i++; |
| 82 | + |
| 83 | + if (i < array.length && array[i] !== null) { |
| 84 | + currentNode.right = new TreeNode(array[i]); |
| 85 | + queue.push(currentNode.right); |
| 86 | + } |
| 87 | + i++; |
| 88 | + } |
| 89 | + return root; |
| 90 | +} |
| 91 | +function pathSum(root, targetSum) { |
| 92 | + // Map to keep the cumulative sum and its frequency. |
| 93 | + const prefixSumCount = new Map(); |
| 94 | + |
| 95 | + // Helper function to perform DFS on the tree and calculate paths. |
| 96 | + function dfs(node, currentSum) { |
| 97 | + if (!node) { |
| 98 | + return 0; |
| 99 | + } |
| 100 | + // Update the current sum by adding the node's value. |
| 101 | + currentSum += node.val; |
| 102 | + |
| 103 | + // Get the number of times we have seen the currentSum - targetSum. |
| 104 | + let pathCount = prefixSumCount.get(currentSum - targetSum) || 0; |
| 105 | + |
| 106 | + // Update the count of the current sum in the map. |
| 107 | + prefixSumCount.set(currentSum, (prefixSumCount.get(currentSum) || 0) + 1); |
| 108 | + |
| 109 | + // Explore left and right subtrees. |
| 110 | + pathCount += dfs(node.left, currentSum); |
| 111 | + pathCount += dfs(node.right, currentSum); |
| 112 | + |
| 113 | + // After returning from the recursion, decrement the frequency of the current sum. |
| 114 | + prefixSumCount.set(currentSum, (prefixSumCount.get(currentSum) || 0) - 1); |
| 115 | + |
| 116 | + // Return the total count of paths found. |
| 117 | + return pathCount; |
| 118 | + } |
| 119 | + |
| 120 | + // Initialize the map with base case before the recursion. |
| 121 | + prefixSumCount.set(0, 1); |
| 122 | + |
| 123 | + // Start DFS from the root node with an initial sum of 0. |
| 124 | + return dfs(root, 0); |
| 125 | +} |
| 126 | + |
| 127 | +const array =[10, 5, -3, 3, 2, null, 11, 3, -2, null, 1]; |
| 128 | +const root = constructTreeFromArray(array) |
| 129 | +const input = root |
| 130 | +const targetSum = 8; |
| 131 | +const output = pathSum(input ,targetSum) |
| 132 | + return ( |
| 133 | + <div> |
| 134 | + <p> |
| 135 | + <b>Input: </b>{JSON.stringify(array)} |
| 136 | + </p> |
| 137 | + <p> |
| 138 | + <b>Output:</b> {output.toString()} |
| 139 | + </p> |
| 140 | + </div> |
| 141 | + ); |
| 142 | +} |
| 143 | +``` |
| 144 | + |
| 145 | +### Code in Different Languages |
| 146 | + |
| 147 | +<Tabs> |
| 148 | + <TabItem value="JavaScript" label="JavaScript"> |
| 149 | + <SolutionAuthor name="@hiteshgahanolia"/> |
| 150 | + ```javascript |
| 151 | + function TreeNode(val, left = null, right = null) { |
| 152 | + return { |
| 153 | + val: val, |
| 154 | + left: left, |
| 155 | + right: right |
| 156 | + }; |
| 157 | +} |
| 158 | + |
| 159 | +function pathSum3(root, targetSum) { |
| 160 | + function solve(node, targetSum, count, path) { |
| 161 | + if (!node) { |
| 162 | + return; |
| 163 | + } |
| 164 | + path.push(node.val); |
| 165 | + pathSumHelper(node, targetSum, count, path); |
| 166 | + solve(node.left, targetSum, count, path.slice()); |
| 167 | + solve(node.right, targetSum, count, path.slice()); |
| 168 | + } |
| 169 | + |
| 170 | + function pathSumHelper(node, targetSum, count, path) { |
| 171 | + let sum = 0; |
| 172 | + for (let i = path.length - 1; i >= 0; i--) { |
| 173 | + sum += path[i]; |
| 174 | + if (sum === targetSum) { |
| 175 | + count[0]++; |
| 176 | + } |
| 177 | + } |
| 178 | + } |
| 179 | + |
| 180 | + const path = []; |
| 181 | + const count = [0]; |
| 182 | + solve(root, targetSum, count, path); |
| 183 | + return count[0]; |
| 184 | +} |
| 185 | +``` |
| 186 | + </TabItem> |
| 187 | + <TabItem value="TypeScript" label="TypeScript"> |
| 188 | + <SolutionAuthor name="@hiteshgahanolia"/> |
| 189 | + ```typescript |
| 190 | + interface TreeNode { |
| 191 | + val: number; |
| 192 | + left?: TreeNode | null; |
| 193 | + right?: TreeNode | null; |
| 194 | +} |
| 195 | + |
| 196 | +function solve(root: TreeNode | null, targetSum: number, count: number[], path: number[]): void { |
| 197 | + if (!root) { |
| 198 | + return; |
| 199 | + } |
| 200 | + path.push(root.val); |
| 201 | + pathSumHelper(root, targetSum, count, path); |
| 202 | + solve(root.left, targetSum, count, path.slice()); |
| 203 | + solve(root.right, targetSum, count, path.slice()); |
| 204 | +} |
| 205 | + |
| 206 | +function pathSumHelper(node: TreeNode, targetSum: number, count: number[], path: number[]): void { |
| 207 | + let sum = 0; |
| 208 | + for (let i = path.length - 1; i >= 0; i--) { |
| 209 | + sum += path[i]; |
| 210 | + if (sum === targetSum) { |
| 211 | + count[0]++; |
| 212 | + } |
| 213 | + } |
| 214 | +} |
| 215 | + |
| 216 | +function pathSum(root: TreeNode | null, targetSum: number): number { |
| 217 | + const path: number[] = []; |
| 218 | + const count: number[] = [0]; |
| 219 | + solve(root, targetSum, count, path); |
| 220 | + return count[0]; |
| 221 | +} |
| 222 | + ``` |
| 223 | + </TabItem> |
| 224 | + <TabItem value="Python" label="Python"> |
| 225 | + <SolutionAuthor name="@hiteshgahanolia"/> |
| 226 | + ```python |
| 227 | + class TreeNode: |
| 228 | + def __init__(self, val=0, left=None, right=None): |
| 229 | + self.val = val |
| 230 | + self.left = left |
| 231 | + self.right = right |
| 232 | + |
| 233 | +class Solution: |
| 234 | + def solve(self, root, targetSum, count, path): |
| 235 | + if not root: |
| 236 | + return |
| 237 | + path.append(root.val) |
| 238 | + self.path_sum_helper(root, targetSum, count, path) |
| 239 | + self.solve(root.left, targetSum, count, path[:]) |
| 240 | + self.solve(root.right, targetSum, count, path[:]) |
| 241 | + |
| 242 | + def path_sum_helper(self, node, targetSum, count, path): |
| 243 | + _sum = 0 |
| 244 | + for val in reversed(path): |
| 245 | + _sum += val |
| 246 | + if _sum == targetSum: |
| 247 | + count[0] += 1 |
| 248 | + |
| 249 | + def pathSum(self, root, targetSum): |
| 250 | + path = [] |
| 251 | + count = [0] |
| 252 | + self.solve(root, targetSum, count, path) |
| 253 | + return count[0] |
| 254 | + |
| 255 | + ``` |
| 256 | + |
| 257 | + </TabItem> |
| 258 | + <TabItem value="Java" label="Java"> |
| 259 | + <SolutionAuthor name="@hiteshgahanolia"/> |
| 260 | +``` |
| 261 | +import java.util.ArrayList; |
| 262 | +import java.util.List; |
| 263 | + |
| 264 | +class TreeNode { |
| 265 | + int val; |
| 266 | + TreeNode left; |
| 267 | + TreeNode right; |
| 268 | + |
| 269 | + TreeNode() {} |
| 270 | + |
| 271 | + TreeNode(int val) { |
| 272 | + this.val = val; |
| 273 | + } |
| 274 | + |
| 275 | + TreeNode(int val, TreeNode left, TreeNode right) { |
| 276 | + this.val = val; |
| 277 | + this.left = left; |
| 278 | + this.right = right; |
| 279 | + } |
| 280 | +} |
| 281 | + |
| 282 | +public class Solution { |
| 283 | + public void solve(TreeNode root, int targetSum, int[] count, List<Integer> path) { |
| 284 | + if (root == null) { |
| 285 | + return; |
| 286 | + } |
| 287 | + path.add(root.val); |
| 288 | + pathSumHelper(root, targetSum, count, path); |
| 289 | + solve(root.left, targetSum, count, new ArrayList<>(path)); |
| 290 | + solve(root.right, targetSum, count, new ArrayList<>(path)); |
| 291 | + } |
| 292 | + |
| 293 | + public void pathSumHelper(TreeNode node, int targetSum, int[] count, List<Integer> path) { |
| 294 | + int sum = 0; |
| 295 | + for (int i = path.size() - 1; i >= 0; i--) { |
| 296 | + sum += path.get(i); |
| 297 | + if (sum == targetSum) { |
| 298 | + count[0]++; |
| 299 | + } |
| 300 | + } |
| 301 | + } |
| 302 | + |
| 303 | + public int pathSum(TreeNode root, int targetSum) { |
| 304 | + List<Integer> path = new ArrayList<>(); |
| 305 | + int[] count = new int[1]; |
| 306 | + solve(root, targetSum, count, path); |
| 307 | + return count[0]; |
| 308 | + } |
| 309 | +} |
| 310 | + |
| 311 | +``` |
| 312 | +</TabItem> |
| 313 | + <TabItem value="C++" label="C++"> |
| 314 | + <SolutionAuthor name="@hiteshgahanolia"/> |
| 315 | +
|
| 316 | +```cpp |
| 317 | + struct TreeNode { |
| 318 | + int val; |
| 319 | + TreeNode *left; |
| 320 | + TreeNode *right; |
| 321 | + TreeNode() : val(0), left(nullptr), right(nullptr) {} |
| 322 | + TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} |
| 323 | + TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} |
| 324 | + }; |
| 325 | + void solve(TreeNode * root,int targetSum,int &count,vector<int>path) |
| 326 | + { |
| 327 | + if(root==NULL) |
| 328 | + { |
| 329 | + return; |
| 330 | + } |
| 331 | + path.push_back(root->val); |
| 332 | + solve(root->left,targetSum,count,path); |
| 333 | + solve(root->right,targetSum,count,path); |
| 334 | +
|
| 335 | + int size=path.size(); |
| 336 | + long long sum=0; |
| 337 | + for(int i=size-1;i>=0;i--) |
| 338 | + { |
| 339 | + sum+=path[i]; |
| 340 | + if(sum==targetSum) |
| 341 | + count++; |
| 342 | + } |
| 343 | + path.pop_back(); |
| 344 | + } |
| 345 | + int pathSum(TreeNode* root, int targetSum) { |
| 346 | + vector<int>path; |
| 347 | + int count=0; |
| 348 | + solve(root,targetSum,count,path); |
| 349 | + return count; |
| 350 | + } |
| 351 | +``` |
| 352 | + </TabItem> |
| 353 | + </Tabs> |
| 354 | + |
| 355 | +#### Complexity Analysis |
| 356 | + ##### Time Complexity: |
| 357 | +- Tree Traversal (DFS): |
| 358 | +We visit each node exactly once during the Depth First Search (DFS). For a binary tree with n nodes, this traversal takes $O(n)$ time. |
| 359 | + |
| 360 | +- Sub-Path Sum Calculation: |
| 361 | +At each node, we check all sub-paths ending at that node. The maximum number of sub-paths to check is equal to the depth of the tree, which in the worst case (a skewed tree) is |
| 362 | +$O(n)$.Thus, for each node, the sum checking operation takes $O(n)$ in the worst case. |
| 363 | +Combining these two parts, the total time complexity is |
| 364 | +$O(n)$×$O(n)$=$O(n^2)$ in the worst case. |
| 365 | + ##### Space Complexity: $O(N)$ |
| 366 | +</TabItem> |
| 367 | +</Tabs> |
| 368 | + |
| 369 | +## References |
| 370 | + |
| 371 | +- **LeetCode Problem**: [Path Sum III](https://leetcode.com/problems/path-sum-iii/description/) |
| 372 | + |
| 373 | +- **Solution Link**: [LeetCode Solution](https://leetcode.com/problems/path-sum-iii/solutions) |
| 374 | + |
0 commit comments